Skip to main content

New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy

  • Chapter
  • First Online:
Scanning Probe Microscopy of Functional Materials

Abstract

The achievement of nanometer spatial resolution with direct elemental selectivity would have a tremendous impact on our ability to probe and understand complex phenomena occurring at the nanoscale. The combination of synchrotron-based X-ray spectroscopy with the high spatial resolution of scanning tunneling microscopy (STM) has the potential to help attain this goal. In this chapter we show how synchrotron X-ray-enhanced scanning tunneling microscopy (SXSTM) has evolved from the very early days of photo-assisted STM to become a promising spectroscopy and imaging technique in nanoscience and nanotechnology. The basic principles of SXSTM are discussed accompanied by a presentation of recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    * The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”) under Contract No. DE-AC02-06CH11357 with the US Department of Energy. The US Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

References

  1. M.C. Roco, W.S. Bainbridge (eds.), Nanotechnology:Social Implications – Maximizing Benefits for Humanity (National Science Foundation Report, Arlington, VA, 2001)

    Google Scholar 

  2. R. Wiesendanger, M. Bode, R. Pascal, W. Allers, U.D. Schwarz, J. Vac. Sci. Technol. A 14, 1161 (1996)

    Article  CAS  Google Scholar 

  3. T.A. Jung, F.J. Himpsel, R.R. Schlittler, J.K. Gimzewski, Chemical information from scanning probe microscopy and spectroscopy, in:Scanning Probe Microscopy:Analytical Methods, Chap. 2, R. Wiesendanger (ed.) (Springer, Berlin, 1998), p. 11

    Google Scholar 

  4. J. Viernow, D.Y. Petrovykh, A. Kirakosian, J.-L. Lin, F.K. Men, M. Henzler, F.J. Himpsel, Phys. Rev. B 59, 10356 (1999)

    Article  CAS  Google Scholar 

  5. B. Kaulich, M. Kiskinova, in Synchrotron Radiation X-ray Microscopy Based on Zone Plate Optics, Lecture Notes in Physics, vol. 588 (Springer, Berlin, 2002)

    Google Scholar 

  6. H.C. Kang, H. Yan, R.P. Winarski, M.V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A.T. Macrander, G.B. Stephenson, Appl. Phys. Lett. 92, 221114 (2008)

    Article  Google Scholar 

  7. M.O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979)

    Article  CAS  Google Scholar 

  8. B.L. Henke, J.A. Smith, D.T. Atwood, J. Appl. Phys. 48, 1852 (1977)

    Article  CAS  Google Scholar 

  9. B.L. Henke, J. Liesegang, S.D. Smith, Phys. Rev. B 19, 3004 (1979)

    Article  CAS  Google Scholar 

  10. J.L. Erskine, E.A. Stern, Phys. Rev. B 12, 5016 (1975)

    Article  CAS  Google Scholar 

  11. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev. Lett. 58, 737 (1987)

    Article  Google Scholar 

  12. J. Stohr, Y. Wu, in New Directions in Research with Third-Generation Soft X-ray Synchrotron Radiation Sources, ed. by A.S. Schlachter, F.J. Wuilleumier (Kluwer Academic Publishers, Netherlands, 1994), p. 211

    Google Scholar 

  13. J. Stohr, J. Electron Spectrosc. Rel. Phenom. 75, 253 (1995)

    Article  Google Scholar 

  14. O. Eriksson, B. Johansson, R.C. Albers, A.M. Boring, M.S.S. Brooks, Phys. Rev. B 42, 2707 (1990)

    Article  CAS  Google Scholar 

  15. B.T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992)

    Article  CAS  Google Scholar 

  16. P. Carra, B.T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70, 694 (1993)

    Article  CAS  Google Scholar 

  17. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)

    Article  Google Scholar 

  18. G. Binnig, H. Rohrer, Helv. Phys. Acta 55, 726 (1982)

    CAS  Google Scholar 

  19. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy:Methods and Applications (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  20. L.A. DuBridge, Phys. Rev. 43, 727 (1933)

    Article  CAS  Google Scholar 

  21. G.F.A. van de Walle, H. van Kempen, P. Wyder, P. Davidsson, Appl. Phys. Lett. 50, 22 (1987)

    Article  CAS  Google Scholar 

  22. J.K. Gimzewski, R. Berndt, R.R. Schlittler, Ultramicroscopy 42–44, 366 (1992)

    Article  Google Scholar 

  23. S. Grafström, J. Appl Phys. 91, 1717 (2002)

    Article  Google Scholar 

  24. O. Dhez, M. Rodrigues, F. Comin, R. Felici, J. Chevrier, AIP Conf. Proc. 879, 1391 (2007)

    Article  Google Scholar 

  25. T. Scheler, M. Rodrigues, T.W. Cornelius, C. Mocuta, A. Malachias, R. Magalhães-Paniago, F. Comin, J. Chevrier, T.H. Metzger, Appl. Phys. Lett. 94, 023109 (2009)

    Article  Google Scholar 

  26. K. Tsuji, K. Hirokawa, Jpn. J. Appl. Phys. 34, L1506 (1995)

    Article  CAS  Google Scholar 

  27. K. Tsuji, K. Hirokawa, Rev. Sci. Instrum. 67, 3573 (1996)

    Article  CAS  Google Scholar 

  28. K. Tsuji, K. Wagatsuma, Jpn. J. Appl. Phys. 36, 1264 (1997)

    Article  Google Scholar 

  29. K. Tsuji, K. Hirokawa, Surf. Interface Anal. 24, 286 (1996)

    Article  CAS  Google Scholar 

  30. K. Tsuji, Y. Hasegawa, K. Wagatsuma, T. Sakurai, Jpn. J. Appl. Phys. 37, L1271 (1998)

    Article  Google Scholar 

  31. Y. Hasegawa, K. Tsuji, K. Nakayama, K. Wagatsuma, T. Sakurai, J. Vac. Sci. Technol. B 18, 2676 (2000)

    Article  CAS  Google Scholar 

  32. K. Tsuji, K. Wagatsuma, K. Sugiyama, K. Hiraga, Y. Waseda, Surf. Interface Anal. 27, 132 (1999)

    Article  CAS  Google Scholar 

  33. T. Matsushima, T. Okuda, T. Eguchi, M. Ono, A. Harasawa, T. Wakita, A. Kataoka,M. Hamada, A. Kamoshida, Y. Hasegawa, T. Kinoshita, Rev. Sci. Instrum. 75, 2149 (2004)

    Article  CAS  Google Scholar 

  34. T. Okuda, T. Eguchi, T. Matsushima, M. Hamada, X.-D. Ma, A. Kataoka, A. Harasawa,T. Kinoshita, Y. Hasewgawa, J. Electr. Spectr. Relat. Phenom. 144–147, 1157 (2005)

    Article  Google Scholar 

  35. A. Saito, J. Maruyama, K. Manabe, K. Kitamoto, K. Takahashi, K. Takami, M. Yabashi,Y. Tanaka, D. Miwa, M. Ishii, Y. Takagi, M. Akai-Kasaya, S. Shin, T. Ishikawa, Y. Kuwahara, M. Aono, J. Synchrotron Rad. 13, 216 (2006)

    Article  CAS  Google Scholar 

  36. A. Saito, J. Maruyama, K. Manabe, K. Kitamoto, K. Takahashi, K. Takami, S. Hirotsune,Y. Takagi, Y. Tanaka, D. Miwa, M. Yabashi, M. Ishii, M. Akai-Kasaya, S. Shin, T. Ishikawa, Y. Kuwahara, M. Aono, Jpn. J. Appl. Phys. 45, 1913 (2006)

    Article  CAS  Google Scholar 

  37. K. Akiyama, T. Eguchi, T. An, Y. Hasegawa, T. Okuda, A. Harasawa, T. Kinoshita, Rev. Sci. Instrum. 76, 083711 (2005)

    Article  Google Scholar 

  38. T. Eguchi, T. Okuda, T. Matsushima, A. Kataoka, A. Harasawa, K. Akiyama, T. Kinoshita,Y. Hasegawa, M. Kawamori, Y. Haruyama, S. Matsui, Appl. Phys. Lett. 89, 243119 (2006)

    Article  Google Scholar 

  39. T. Okuda, T. Eguchi, K. Akiyama, A. Harasawa, T. Kinoshita, Y. Hasegawa, M. Kawamori, Y. Haruyama, S. Matsui, Phys. Rev. Lett. 102, 105503 (2009)

    Article  Google Scholar 

  40. J. Tersoff, D.R. Hamann, Phys. Rev. B 31, 805 (1985)

    Article  CAS  Google Scholar 

  41. J.P. Ibe, P.P. Bey Jr., S.L. Brandow, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton, J. Vac. Sci. Technol. A 8, 3570 (1990)

    Article  CAS  Google Scholar 

  42. B. Zhang, E. Wang, Electrochimica Acta 39, 103 (1994)

    Article  CAS  Google Scholar 

  43. A.A. Gewirth, B.K. Niece, Chem. Rev. 97, 1129 (1997)

    Article  CAS  Google Scholar 

  44. K. Itaya, Prog. Surf. Sci. 58, 121 (1998)

    Article  CAS  Google Scholar 

  45. A. Saito, K. Takahashi, Y. Takagi, K. Nakamatsu, K. Hanai, Y. Tanaka, D. Miwa, M. Akai-kasaya, S. Shin, S. Matsui, T. Ishikawa, Y. Kuwahara, M. Aono, Surf. Sci. 601, 5294 (2007)

    Article  CAS  Google Scholar 

  46. V. Rose, J.W. Freeland, K.E. Gray, S.K. Streiffer, Appl. Phys. Lett. 92, 193510 (2008)

    Article  Google Scholar 

  47. J.W. Freeland, J.C. Lang, G. Srajer, R. Winarski, D. Shu, D.M. Mills, Rev. Sci. Instrum. 73, 1408 (2002)

    Article  CAS  Google Scholar 

  48. V. Rose, J.W. Freeland, AIP Conf. Proc. 1234, 445 (2010)

    Google Scholar 

  49. E.Z. Kurmaev, A.L. Ankudinov, J.J. Rehr, L.D. Finkelstein, P.F. Karimov, A. Moewes,J. Electron Spectrosc. Relat. Phenom. 148, 1 (2005)

    Article  CAS  Google Scholar 

  50. C.-Y. Chiu, Y.-L. Chan, Y.J. Hsu, D.H. Wie, Appl. Phys. Lett. 92, 103101 (2008)

    Article  Google Scholar 

  51. F. Träger (ed.), Springer Handbook of Lasers and Optics, Chap. 18 (Springer, New York, 1998) p. 1153

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to several people who contributed to this project. Special thanks go to Kenneth Gray for the generous allocation of experimental equipment, which made this work possible in the first place. We thank Vitali Metlushko for the growth and patterning of the studied samples. Curt Preissner is acknowledged for his engineering support and Matthias Bode for several fruitful discussions. This work has been supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rose, V., Freeland, J.W., Streiffer, S.K. (2010). New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy of Functional Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7167-8_14

Download citation

Publish with us

Policies and ethics