Skip to main content

Synapses and Alzheimers’s Disease: Effect of Immunotherapy?

  • Chapter
  • First Online:
  • 618 Accesses

Abstract

Alzheimer’s disease (AD) was first described more than 100 years ago; however, the mechanisms underlying its pathogenesis are still poorly understood. Current theories suggest a pivotal role for the protein amyloid-β (Aβ) and many of the novel treatments for AD focus on Aβ. In this chapter, we discuss evidence that Aβ underpins the cognitive decline as a result of direct and indirect toxicity of the peptide on synapses in the cerebral cortex and hippocampus. Furthermore, we will follow the promise that Aβ immunisation holds to alter the natural history of AD, from its beginnings in animal models to the current research on humans. The success seen in mice in preventing both synapse loss and reducing functional decline is yet to be matched in humans and serious adverse events in patients stopped the initial vaccination approach. Research, however, is continuing in human AD aiming to provide a greater understanding of the mechanisms underlying the immune response and the potential effects of immunisation on preventing or reversing cognitive impairment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert M S (1996). Cognitive and neurobiologic markers of early Alzheimer disease. Proc Natl Acad Sci U S A 93:13547–51

    PubMed  CAS  Google Scholar 

  • Almeida C G, Tampellini D, Takahashi R H, et al. (2005). Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 20:187–98

    PubMed  CAS  Google Scholar 

  • Arriagada P V, Marzloff K and Hyman B T (1992). Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–8

    PubMed  CAS  Google Scholar 

  • Association A P (2000). Diagnostic and Statistical Manual of Mental Disorders, Washington, DC

    Google Scholar 

  • Bahmanyar S, Higgins G A, Goldgaber D, et al. (1987). Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer’s disease. Science 237:77–80

    PubMed  CAS  Google Scholar 

  • Bard F, Barbour R, Cannon C, et al. (2003). Epitope and isotype specificities of antibodies to beta-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci U S A 100:2023–8

    PubMed  CAS  Google Scholar 

  • Bard F, Cannon C, Barbour R, et al. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–9

    PubMed  CAS  Google Scholar 

  • Bayer A J, Bullock R, Jones R W, et al. (2005). Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 64:94–101

    PubMed  CAS  Google Scholar 

  • Boche D, Zotova E, Weller R O, et al. (2008). Consequence of A{beta} immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–310

    PubMed  CAS  Google Scholar 

  • Bombois S, Maurage C A, Gompel M, et al. (2007). Absence of beta-amyloid deposits after immunization in Alzheimer disease with Lewy body dementia. Arch Neurol 64:583–7

    PubMed  Google Scholar 

  • Borchelt D R, Ratovitski T, van Lare J, et al. (1997). Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939–45

    PubMed  CAS  Google Scholar 

  • Braak H and Braak E (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–8; discussion 278–84

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J, et al. (1996). Age, neurofibrillary changes, A beta-amyloid and the onset of Alzheimer’s disease. Neurosci Lett 210:87–90

    PubMed  CAS  Google Scholar 

  • Brown M S and Goldstein J L (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    PubMed  CAS  Google Scholar 

  • Buttini M, Masliah E, Barbour R, et al. (2005). Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. J Neurosci 25:9096–101

    PubMed  CAS  Google Scholar 

  • Chartier-Harlin M C, Crawford F, Houlden H, et al. (1991). Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–6

    PubMed  CAS  Google Scholar 

  • Chauhan N B (2003). Membrane dynamics, cholesterol homeostasis, and Alzheimer’s disease. J Lipid Res 44:2019–29

    PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, et al. (1997). Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    PubMed  CAS  Google Scholar 

  • Davies C A, Mann D M, Sumpter P Q, et al. (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78:151–64

    PubMed  CAS  Google Scholar 

  • de la Monte S M and Hedley-Whyte E T (1990). Small cerebral hemispheres in adults with Down’s syndrome: contributions of developmental arrest and lesions of Alzheimer’s disease. J Neuropathol Exp Neurol 49:509–20

    PubMed  CAS  Google Scholar 

  • DeMattos R B, Bales K R, Cummins D J, et al. (2001). Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 98:8850–5

    PubMed  CAS  Google Scholar 

  • Duff K, Eckman C, Zehr C, et al. (1996). Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710–3

    PubMed  CAS  Google Scholar 

  • Elgersma Y and Silva A J (1999). Molecular mechanisms of synaptic plasticity and memory. Curr Opin Neurobiol 9:209–13

    PubMed  CAS  Google Scholar 

  • Ferrer I, Boada Rovira M, Sanchez Guerra M L, et al. (2004). Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20

    PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–7

    PubMed  CAS  Google Scholar 

  • Games D, Bard F, Grajeda H, et al. (2000). Prevention and reduction of AD-type pathology in PDAPP mice immunized with A beta 1–42. Ann N Y Acad Sci 920:274–84

    PubMed  CAS  Google Scholar 

  • Giedraitis V, Sundelof J, Irizarry M C, et al. (2007). The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neurosci Lett 427:127–31

    PubMed  CAS  Google Scholar 

  • Gilman S, Koller M, Black R S, et al. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–62

    PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin M C, Mullan M, et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–6

    PubMed  CAS  Google Scholar 

  • Goedert M, Crowther R A and Spillantini M G (1998). Tau mutations cause frontotemporal dementias. Neuron 21:955–8

    PubMed  CAS  Google Scholar 

  • Graham D I and Lantos P L (2002). Greenfield’s Neuropathology. London, Arnold

    Google Scholar 

  • Grimm M O, Grimm H S, Patzold A J, et al. (2005). Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7:1118–23

    PubMed  CAS  Google Scholar 

  • Haass C and Selkoe D J (1993). Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 75:1039–42

    PubMed  CAS  Google Scholar 

  • Hardy J, Duff K, Hardy K G, et al. (1998). Genetic dissection of Alzheimer’s disease and related dementias: amyloid and its relationship to tau. Nat Neurosci 1:355–8

    PubMed  CAS  Google Scholar 

  • Hardy J and Selkoe D J (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–6

    PubMed  CAS  Google Scholar 

  • Hardy J A and Higgins G A (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–5

    PubMed  CAS  Google Scholar 

  • Hartley D M, Walsh D M, Ye C P, et al. (1999). Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–84

    PubMed  CAS  Google Scholar 

  • Hock C, Konietzko U, Streffer J R, et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–54

    PubMed  CAS  Google Scholar 

  • Holcomb L, Gordon M N, McGowan E, et al. (1998). Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    PubMed  CAS  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, et al. (2008). Long term effect of Abeta42 immunization in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–23

    PubMed  CAS  Google Scholar 

  • Hsia A Y, Masliah E, McConlogue L, et al. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 96:3228–33

    PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, et al. (1996). Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    PubMed  CAS  Google Scholar 

  • Jacobsen J S, Wu C C, Redwine J M, et al. (2006). Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5161–6

    PubMed  CAS  Google Scholar 

  • Janus C, Pearson J, McLaurin J, et al. (2000). Abeta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–82

    PubMed  CAS  Google Scholar 

  • Kang J, Lemaire H G, Unterbeck A, et al. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–6

    PubMed  CAS  Google Scholar 

  • Klyubin I, Betts V, Welzel A T, et al. (2008). Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28:4231–7

    PubMed  CAS  Google Scholar 

  • Lai, M K, Tsang S W, Garcia-Alloza, M, et al. (2006). Selective effects of the APOE epsilon4 allele on presynaptic cholinergic markers in the neocortex of Alzheimer’s disease. Neurobiol Dis 22(3): 555–561

    Google Scholar 

  • Lassmann H (1996). Patterns of synaptic and nerve cell pathology in Alzheimer’s disease. Behav Brain Res 78:9–14

    PubMed  CAS  Google Scholar 

  • Lassmann H, Fischer P and Jellinger K (1993). Synaptic pathology of Alzheimer’s disease. Ann N Y Acad Sci 695:59–64

    PubMed  CAS  Google Scholar 

  • Lee H G, Zhu X, Castellani R J, et al. (2007). Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther 321:823–9

    PubMed  CAS  Google Scholar 

  • Lee M, Bard F, Johnson-Wood K, et al. (2005). Abeta42 immunization in Alzheimer’s disease generates Abeta N-terminal antibodies. Ann Neurol 58:430–5

    PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–7

    PubMed  CAS  Google Scholar 

  • Lewis J, Dickson D W, Lin W L, et al. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–91

    PubMed  CAS  Google Scholar 

  • Love S, Siew L K, Dawbarn D, et al. (2006). Premorbid effects of APOE on synaptic proteins in human temporal neocortex. Neurobiol Aging 27:797–803

    PubMed  CAS  Google Scholar 

  • Lue L F, Kuo Y M, Roher A E, et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–62

    PubMed  CAS  Google Scholar 

  • Luscher C, Nicoll R A, Malenka R C, et al. (2000). Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–50

    PubMed  CAS  Google Scholar 

  • Mahley R W (1988). Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–30

    PubMed  CAS  Google Scholar 

  • Mann D M, Iwatsubo T, Ihara Y, et al. (1996). Predominant deposition of amyloid-beta 42(43) in plaques in cases of Alzheimer’s disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene. Am J Pathol 148:1257–66

    PubMed  CAS  Google Scholar 

  • Martin S J, Grimwood P D and Morris R G (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    PubMed  CAS  Google Scholar 

  • Masliah E (1995). Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10:509–19

    PubMed  CAS  Google Scholar 

  • Masliah E, Hansen L, Adame A, et al. (2005). Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–31

    PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Alford M, et al. (2001). Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–9

    PubMed  CAS  Google Scholar 

  • Masliah E, Terry R D, Alford M, et al. (1991). Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer’s disease. Am J Pathol 138:235–46

    PubMed  CAS  Google Scholar 

  • McLaurin J, Cecal R, Kierstead M E, et al. (2002). Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–9

    PubMed  CAS  Google Scholar 

  • Morgan D, Diamond D M, Gottschall P E, et al. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–5

    PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Yu G Q, et al. (2000). High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–8

    PubMed  CAS  Google Scholar 

  • Myers A, Holmans P, Marshall H, et al. (2000). Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 290:2304–5

    PubMed  CAS  Google Scholar 

  • Nagy Z, Esiri M M, Jobst K A, et al. (1995). Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria. Dementia 6:21–31

    PubMed  CAS  Google Scholar 

  • Naslund J, Haroutunian V, Mohs R, et al. (2000). Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–7

    PubMed  CAS  Google Scholar 

  • Nicoll J A, Barton E, Boche D, et al. (2006). Abeta Species Removal After Abeta42 Immunization. J Neuropathol Exp Neurol 65:1040–1048

    PubMed  CAS  Google Scholar 

  • Nicoll J A, Wilkinson D, Holmes C, et al. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–52

    PubMed  CAS  Google Scholar 

  • Oddo S, Billings L, Kesslak J P, et al. (2004). Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–32

    PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, et al. (2003a). Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–70

    PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Shepherd J D, et al. (2003b). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–21

    PubMed  CAS  Google Scholar 

  • Orgogozo J M, Gilman S, Dartigues J F, et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    PubMed  CAS  Google Scholar 

  • Oyama F, Cairns N J, Shimada H, et al. (1994). Down’s syndrome: up-regulation of beta-amyloid protein precursor and tau mRNAs and their defective coordination. J Neurochem 62:1062–6

    PubMed  CAS  Google Scholar 

  • Poirier J (2000). Apolipoprotein E and Alzheimer’s disease. A role in amyloid catabolism. Ann N Y Acad Sci 924:81–90

    PubMed  CAS  Google Scholar 

  • Price J L and Morris J C (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–68

    PubMed  CAS  Google Scholar 

  • Riddell D R, Zhou H, Atchison K, et al. (2008). Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 28:11445–53

    PubMed  CAS  Google Scholar 

  • Ritchie K and Lovestone S (2002). The dementias. Lancet 360:1759–66

    PubMed  Google Scholar 

  • Roman F S, Truchet B, Marchetti E, et al. (1999). Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals. Prog Neurobiol 58:61–87

    PubMed  CAS  Google Scholar 

  • Saunders A M, Strittmatter W J, Schmechel D, et al. (1993). Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–72

    PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W, et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–7

    PubMed  CAS  Google Scholar 

  • Schenk D, Hagen M and Seubert P (2004). Current progress in beta-amyloid immunotherapy. Curr Opin Immunol 16:599–606

    PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–70

    PubMed  CAS  Google Scholar 

  • Selkoe D J (1991). The molecular pathology of Alzheimer’s disease. Neuron 6:487–98

    PubMed  CAS  Google Scholar 

  • Selkoe D J (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–66

    PubMed  CAS  Google Scholar 

  • Selkoe D J (2002). Alzheimer’s disease is a synaptic failure. Science 298:789–91

    PubMed  CAS  Google Scholar 

  • Shankar G M, Bloodgood B L, Townsend M, et al. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–75

    PubMed  CAS  Google Scholar 

  • Shankar G M, Li S, Mehta T H, et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–42

    PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev E I, Liang Y, et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–60

    PubMed  CAS  Google Scholar 

  • Small D H, Mok S S and Bornstein J C (2001). Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2:595–8

    PubMed  CAS  Google Scholar 

  • Small G W, Rabins P V, Barry P P, et al. (1997). Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA 278:1363–71

    PubMed  CAS  Google Scholar 

  • Small S A and Duff K (2008). Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60:534–42

    PubMed  CAS  Google Scholar 

  • Snyder E M, Nong Y, Almeida C G, et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–8

    PubMed  CAS  Google Scholar 

  • Solomon B, Koppel R, Frankel D, et al. (1997). Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci U S A 94:4109–12

    PubMed  CAS  Google Scholar 

  • Solomon B, Koppel R, Hanan E, et al. (1996). Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc Natl Acad Sci U S A 93:452–5

    PubMed  CAS  Google Scholar 

  • Spillantini M G and Goedert M (1998). Tau protein pathology in neurodegenerative diseases. Trends Neurosci 21:428–33

    PubMed  CAS  Google Scholar 

  • St George-Hyslop P H and Morris J C (2008). Will anti-amyloid therapies work for Alzheimer’s disease? Lancet 372:180–2

    PubMed  Google Scholar 

  • St George-Hyslop P H, Tanzi R E, Polinsky R J, et al. (1987). The genetic defect causing familial Alzheimer’s disease maps on chromosome 21. Science 235:885–90

    PubMed  CAS  Google Scholar 

  • Strittmatter W J, Saunders A M, Schmechel D, et al. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:1977–81

    PubMed  CAS  Google Scholar 

  • Sze C I, Troncoso J C, Kawas C, et al. (1997). Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–44

    PubMed  CAS  Google Scholar 

  • Terry R D (1996). The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 55:1023–5

    PubMed  CAS  Google Scholar 

  • Terry R D, Masliah E, Salmon D P, et al. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–80

    PubMed  CAS  Google Scholar 

  • Uylings H B and de Brabander J M (2002). Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49:268–76

    PubMed  Google Scholar 

  • Varadarajan S, Kanski J, Aksenova M, et al. (2001). Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A beta(1–42) and A beta(25–35). J Am Chem Soc 123:5625–31

    PubMed  CAS  Google Scholar 

  • Varadarajan S, Yatin S, Kanski J, et al. (1999). Methionine residue 35 is important in amyloid beta-peptide-associated free radical oxidative stress. Brain Res Bull 50:133–41

    PubMed  CAS  Google Scholar 

  • Walsh D M, Klyubin I, Fadeeva J V, et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–9

    PubMed  CAS  Google Scholar 

  • Wang H W, Pasternak J F, Kuo H, et al. (2002). Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–40

    PubMed  CAS  Google Scholar 

  • Wavrant-DeVrieze F, Lambert J C, Stas L, et al. (1999). Association between coding variability in the LRP gene and the risk of late-onset Alzheimer’s disease. Hum Genet 104:432–4

    PubMed  CAS  Google Scholar 

  • Weller R O and Nicoll J A (2003). Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 25:611–6

    PubMed  Google Scholar 

  • Weller R O, Subash M, Preston S D, et al. (2008). Perivascular drainage of amyloid from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–66

    PubMed  CAS  Google Scholar 

  • Wilcock D M, DiCarlo G, Henderson D, et al. (2003). Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. J Neurosci 23:3745–51

    PubMed  CAS  Google Scholar 

  • Wilcock D M, Munireddy S K, Rosenthal A, et al. (2004). Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15:11–20

    PubMed  CAS  Google Scholar 

  • Wisniewski K E, Wisniewski H M and Wen G Y (1985). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–82

    PubMed  CAS  Google Scholar 

  • Yatin S M, Varadarajan S, Link C D, et al. (1999). In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiol Aging 20: 325–30; discussion 339–42

    PubMed  CAS  Google Scholar 

  • Ye C P, Selkoe D J and Hartley D M (2003). Protofibrils of amyloid beta-protein inhibit specific K+ currents in neocortical cultures. Neurobiol Dis 13:177–90

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Boche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Denham, N.C., Nicoll, J.A.R., Boche, D. (2011). Synapses and Alzheimers’s Disease: Effect of Immunotherapy?. In: Wyttenbach, A., O'Connor, V. (eds) Folding for the Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7061-9_14

Download citation

Publish with us

Policies and ethics