Skip to main content

Functional Magnetic Resonance Imaging

  • Chapter
  • First Online:
Book cover Brain Imaging in Behavioral Medicine and Clinical Neuroscience

Abstract

Functional magnetic resonance imaging (FMRI) is a noninvasive neuroimaging technique that enables quantification of brain function over time with an unprecedented balance of temporal and spatial resolution. FMRI has shown great utility in cognitive neuroscience and clinical research. Targets of FMRI investigations usually involve the neural networks associated with discrete cognitive challenges (broadly defined to include all brain processes, such as emotional, motivational, sensory, and motor challenges).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman NE, Menon V, Blasey CM, et al. A developmental fMRI study of the Stroop color-word task. Neuroimage. 2002;16(1):61–75.

    Article  PubMed  Google Scholar 

  2. Adler CM, McDonough-Ryan P, Sax KW, Holland SK, Arndt S, Strakowski SM. fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res. 2000;34(4–5): 317–324.

    Article  PubMed  Google Scholar 

  3. Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry. 2002;159(8):1322–1328.

    Article  PubMed  Google Scholar 

  4. Ahmad Z, Balsamo LM, Sachs BC, Xu B, Gaillard WD. Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology. 2003; 60(10):1598–1605.

    PubMed  Google Scholar 

  5. Aylward EH, Richards TL, Berninger VW, et al. Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology. 2003;61(2):212–219.

    PubMed  Google Scholar 

  6. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993;30(2):161–173.

    Article  PubMed  Google Scholar 

  7. Binder JR, Rao SM, Hammeke TA, et al. Functional magnetic resonance imaging of human auditory cortex. Ann Neurol. 1994;35(6):662–672.

    Article  PubMed  Google Scholar 

  8. Birbaumer N, Grodd W, Diedrich O, et al. fMRI reveals amygdala activation to human faces in social phobics. Neuroreport. 1998;9(6):1223–1226.

    Article  PubMed  Google Scholar 

  9. Bloom AS, Hoffmann RG, Fuller SA, Pankiewicz J, Harsch HH, Stein EA. Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp. 1999;8(4):235–244.

    Article  PubMed  Google Scholar 

  10. Boor S, Vucurevic G, Pfleiderer C, Stoeter P, Kutschke G, Boor R. EEG-related functional MRI in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 2003;44(5): 688–692.

    Article  PubMed  Google Scholar 

  11. Boynton GM, Engel SA, Glover GH, Heeger DJ. Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci. 1996;16(13):4207–4221.

    PubMed  Google Scholar 

  12. Breiter HC, Gollub RL, Weisskoff RM, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19(3):591–611.

    Article  PubMed  Google Scholar 

  13. Buckner RL, Bandettini PA, O’Craven KM, et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc Natl Acad Sci U S A. 1996;93(25):14878–14883.

    Article  PubMed  Google Scholar 

  14. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  15. Bunge SA, Dudukovic NM, Thomason ME, Vaidya CJ, Gabrieli JD. Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 2002;33(2):301–311.

    Article  PubMed  Google Scholar 

  16. Bush G, Frazier JA, Rauch SL, et al. Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting Stroop. Biol Psychiatry. 1999;45(12):1542–1552.

    Article  PubMed  Google Scholar 

  17. Callicott JH, Ramsey NF, Tallent K, et al. Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. Neuropsychopharmacology. 1998;18(3): 186–196.

    Article  PubMed  Google Scholar 

  18. Chakraborty A, McEvoy AW. Presurgical functional mapping with functional MRI. Curr Opin Neurol. 2008;21(4): 446–451.

    Article  PubMed  Google Scholar 

  19. Cohen JD, Perlstein WM, Braver TS, et al. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386:604–607.

    Article  PubMed  Google Scholar 

  20. Corina DP, Richards TL, Serafini S, et al. fMRI auditory language differences between dyslexic and able reading children. Neuroreport. 2001;12(6):1195–1201.

    Article  PubMed  Google Scholar 

  21. D’Esposito M, Detre JA, Alsop DC, et al. The neural basis of the central executive system of working memory. Nature. 1995;378:279–281.

    Article  PubMed  Google Scholar 

  22. Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp. 1997; 5(5):329–340.

    Article  PubMed  Google Scholar 

  23. Desmond JE, Glover GH. Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods. 2002;118(2):115–128.

    Article  PubMed  Google Scholar 

  24. Due DL, Huettel SA, Hall WG, Rubin DC. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry. 2002;159(6):954–960.

    Article  PubMed  Google Scholar 

  25. Durston S, Tottenham NT, Thomas KM, et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry. 2003;53(10):871–878.

    Article  PubMed  Google Scholar 

  26. Gaillard WD, Balsamo LM, Ibrahim Z, Sachs BC, Xu B. fMRI identifies regional specialization of neural networks for reading in young children. Neurology. 2003;60(1):94–100.

    PubMed  Google Scholar 

  27. Gaillard WD, Pugliese M, Grandin CB, et al. Cortical localization of reading in normal children: an fMRI language study. Neurology. 2001;57(1):47–54.

    PubMed  Google Scholar 

  28. George MS, Anton RF, Bloomer C, et al. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues. Arch Gen Psychiatry. 2001;58(4):345–352.

    Article  PubMed  Google Scholar 

  29. Georgiewa P, Rzanny R, Hopf JM, et al. fMRI during word processing in dyslexic and normal reading children. Neuroreport. 1999;10(16):3459–3465.

    Article  PubMed  Google Scholar 

  30. Graveline CJ, Mikulis DJ, Crawley AP, Hwang PA. Regionalized sensorimotor plasticity after hemispherectomy fMRI evaluation. Pediatr Neurol. 1998;19(5):337–342.

    Article  PubMed  Google Scholar 

  31. Grossman M, Cooke A, DeVita C, et al. Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology. 2003;60(5):775–781.

    Article  PubMed  Google Scholar 

  32. Haslinger B, Erhard P, Kampfe N, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124(Pt 3):558–570.

    Article  PubMed  Google Scholar 

  33. Hofer A, Weiss EM, Golaszewski SM, et al. An FMRI study of episodic encoding and recognition of words in patients with schizophrenia in remission. Am J Psychiatry. 2003;160(5):911–918.

    Article  PubMed  Google Scholar 

  34. Holland SK, Plante E, Weber Byars A, Strawsburg RH, Schmithorst VJ, Ball WS Jr. Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage. 2001;14(4):837–843.

    Article  PubMed  Google Scholar 

  35. Holloway V, Gadian DG, Vargha-Khadem F, Porter DA, Boyd SG, Connelly A. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study. Brain. 2000;123(Pt 12):2432–2444.

    Article  PubMed  Google Scholar 

  36. Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH. Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging. 2002;20(2):141–145.

    Article  PubMed  Google Scholar 

  37. Jessen F, Scheef L, Germeshausen L, et al. Reduced hippocampal activation during encoding and recognition of words in schizophrenia patients. Am J Psychiatry. 2003; 160(7):1305–1312.

    Article  PubMed  Google Scholar 

  38. Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage. 2000; 11(3):179–187.

    Article  PubMed  Google Scholar 

  39. Josephs O, Turner R, Friston K. Event-related fMRI. Hum Brain Mapp. 1997;5:243–248.

    Article  PubMed  Google Scholar 

  40. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology. 2001;57(5):812–816.

    PubMed  Google Scholar 

  41. Kumari V, Gray JA, Ffytche DH, et al. Cognitive effects of nicotine in humans: an fMRI study. Neuroimage. 2003;19(3): 1002–1013.

    Article  PubMed  Google Scholar 

  42. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992; 89:5675–5679.

    Article  PubMed  Google Scholar 

  43. Lawrie SM, Whalley HC, Job DE, Johnstone EC. Structural and functional abnormalities of the amygdala in schizophrenia. Ann N Y Acad Sci. 2003;985:445–460.

    Article  PubMed  Google Scholar 

  44. Lee JH, Telang FW, Springer CS Jr, Volkow ND. Abnormal brain activation to visual stimulation in cocaine abusers. Life Sci. 2003;73(15):1953–1961.

    Article  PubMed  Google Scholar 

  45. Levin JM, Ross MH, Mendelson JH, et al. Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res. 1998;82(3):135–146.

    Article  PubMed  Google Scholar 

  46. Levine JB, Gruber SA, Baird AA, Yurgelun-Todd D. Obsessive–compulsive disorder among schizophrenic patients: an exploratory study using functional magnetic resonance imaging data. Compr Psychiatry. 1998;39(5):308–311.

    Article  PubMed  Google Scholar 

  47. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003;23(15):6351–6356.

    PubMed  Google Scholar 

  48. Li SJ, Biswal B, Li Z, et al. Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med. 2000;43(1):45–51.

    Article  PubMed  Google Scholar 

  49. Liegeois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F, Baldeweg T. A direct test for lateralization of language activation using fMRI: comparison with invasive assessments in children with epilepsy. Neuroimage. 2002; 17(4):1861–1867.

    Article  PubMed  Google Scholar 

  50. McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci. 2003;15(3):394–408.

    Article  PubMed  Google Scholar 

  51. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–9872.

    Article  PubMed  Google Scholar 

  52. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992;89:5951–5955.

    Article  PubMed  Google Scholar 

  53. Paquette V, Levesque J, Mensour B, et al. “Change the mind and you change the brain”: effects of cognitive–behavioral therapy on the neural correlates of spider phobia. Neuroimage. 2003;18(2):401–409.

    Article  PubMed  Google Scholar 

  54. Paskavitz J, Sweet LH, Wellen J, Cohen R. Recruitment and stabilization of brain activation within a working memory task; an FMRI study. Brain Imaging Behav. 2010;4(1):5–21.

    Article  PubMed  Google Scholar 

  55. Paskavitz J, Sweet LH, Samuel J. Deactivations during working memory distinguishes multiple sclerosis patients from controls. Presented at the 14th annual meeting of the Organization for Human Brain Mapping, Melbourne, Australia, June, 2008. Neuroimage. 2008;41(S1):S5 [abstract].

    Google Scholar 

  56. Penner IK, Rausch M, Kappos L, Opwis K, Radu EW. Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol. 2003;250(4):461–472.

    Article  PubMed  Google Scholar 

  57. Peters S, Suchan B, Rusin J, et al. Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport. 2003;14(6):809–812.

    Article  PubMed  Google Scholar 

  58. Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage. 2002;17(3):1403–1414.

    Article  PubMed  Google Scholar 

  59. Rao SM, Bobholz JA, Hammeke TA, et al. Functional evidence for subcortical participation in conceptual reasoning skills. Neuroreport. 1997;8:1987–1993.

    Article  PubMed  Google Scholar 

  60. Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain. 2002;125(Pt 2):276–289.

    Article  PubMed  Google Scholar 

  61. Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain. 2000;123(Pt 2):394–403.

    Article  PubMed  Google Scholar 

  62. Schneider F, Weiss U, Kessler C, et al. Subcortical correlates of differential classical conditioning of aversive emotional reactions in social phobia. Biol Psychiatry. 1999;45(7): 863–871.

    Article  PubMed  Google Scholar 

  63. Schneider F, Habel U, Kessler C, Posse S, Grodd W, Muller-Gartner HW. Functional imaging of conditioned aversive emotional responses in antisocial personality disorder. Neuropsychobiology. 2000;42(4):192–201.

    Article  PubMed  Google Scholar 

  64. Schneider F, Habel U, Wagner M, et al. Subcortical correlates of craving in recently abstinent alcoholic patients. Am J Psychiatry. 2001;158(7):1075–1083.

    Article  PubMed  Google Scholar 

  65. Schlosser R, Gesierich T, Kaufmann B, et al. Altered effective connectivity during working memory performance in schizophrenia: a study with fMRI and structural equation modeling. Neuroimage. 2003;19(3):751–763.

    Article  PubMed  Google Scholar 

  66. Shaywitz BA, Shaywitz SE, Pugh KR, et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry. 2002;52(2):101–110.

    Article  PubMed  Google Scholar 

  67. Small SA, Nava AS, Perera GM, Delapaz R, Stern Y. Evaluating the function of hippocampal subregions with high-resolution MRI in Alzheimer’s disease and aging. Microsc Res Tech. 2000;51(1):101–108.

    Article  PubMed  Google Scholar 

  68. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(1):44–50.

    Article  PubMed  Google Scholar 

  69. Staffen W, Mair A, Zauner H, et al. Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain. 2002;125(Pt 6):1275–1282.

    Article  PubMed  Google Scholar 

  70. Stapleton SR, Kiriakopoulos E, Mikulis D, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26(2):68–82.

    Article  PubMed  Google Scholar 

  71. Sweet L, Rao S, Primeau P, Mayer A, Cohen R. Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 2004;14(2): 150–157.

    PubMed  Google Scholar 

  72. Sweet L, Rao S, Primeau P, Durgerian S, Cohen R. FMRI response to increased verbal working memory demands among patients with multiple sclerosis. Hum Brain Mapp. 2006;27(1):28–36.

    Article  PubMed  Google Scholar 

  73. Sweet LH, Paskavitz JF, Haley AP, Gunstad JJ, Nyalakanti PK, Cohen RA. Imaging phonological similarity effects in verbal working memory. Neuropsychologia. 2008;46(4):1114–1123.

    Article  PubMed  Google Scholar 

  74. Sweet LH, Mulligan RC, Finnerty CE, Jerskey BA, David SP, Cohen RA, Niaura RS. Effects of nicotine withdrawal on verbal working memory and associated brain response. Psychiatry Res. 2010 Jul 30;183(1):69–74.

    Google Scholar 

  75. Sweet LH, Jerskey BA, Aloia MS. Default network response to a working memory challenge after withdrawal of continuous positive airway pressure treatment for obstructive sleep apnea. Brain Imaging Behav. 2010;4(2):155–163.

    Article  PubMed  Google Scholar 

  76. Tapert SF, Brown GG, Kindermann SS, Cheung EH, Frank LR, Brown SA. fMRI measurement of brain dysfunction in alcohol-dependent young women. Alcohol Clin Exp Res. 2001;25(2):236–245.

    Article  PubMed  Google Scholar 

  77. Temple E, Poldrack RA, Salidis J, et al. Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport. 2001;12(2): 299–307.

    Article  PubMed  Google Scholar 

  78. Volz HP, Gaser C, Hager F, et al. Brain activation during cognitive stimulation with the Wisconsin card sorting test – a functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res. 1997;75(3):145–157.

    Article  PubMed  Google Scholar 

  79. Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science. 1998;281(5380):1188–1191.

    Article  PubMed  Google Scholar 

  80. Wexler BE, Gottschalk CH, Fulbright RK, et al. Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry. 2001;158(1):86–95.

    Article  PubMed  Google Scholar 

  81. Zahran E, Aguire G, D’Esposito M. A trial-based experimental design for fMRI. Neuroimage. 1997;6:122–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Sweet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sweet, L.H. (2011). Functional Magnetic Resonance Imaging. In: Cohen, R., Sweet, L. (eds) Brain Imaging in Behavioral Medicine and Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6373-4_3

Download citation

Publish with us

Policies and ethics