Skip to main content

Terminal Signal: Anti-Inflammatory Effects of α-Melanocyte-Stimulating Hormone Related Peptides Beyond the Pharmacophore

  • Chapter
Melanocortins: Multiple Actions and Therapeutic Potential

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 681))

Abstract

During the last two decades a significant number of investigations has established the fact that α-Melanocyte-stimulating hormone (α-MSH) is a potent anti-inflammatory mediator. The anti-inflammatory effects of α-MSH can be elicited via melanocortin receptors (MC-Rs) broadly expressed in a number of tissues ranging from the central nervous system to cells of the immune system and on resident somatic cells of peripheral tissues. α-MSH affects various pathways regulating inflammatory responses such as NF-κB activation, expression of adhesion molecules, inflammatory cytokines, chemokine receptors, T-cell proliferation and activity and inflammatory cell migration. In vivo α-MSH has been shown to be anti-inflammatory as well in animal models of fever, irritant and allergic contact dermatitis, cutaneous vasculitis, fibrosis, in ocular, gastrointestinal, brain and allergic airway inflammation and arthritis. A broad range of effects of α-MSH exerted beyond the field of inflammation, its pigmentory capacity being only the most visible aspect, has been one of the major impediments limiting the use of α-MSH in human inflammatory disorders. Interestingly KPV, C-terminal tripeptide of α-MSH, which lacks the entire sequence motif required for binding to any of the known MC-Rs, retains almost all of the anti-inflammatory capacity of the full hormone, but in its activities display a lack of any pigmentory action. While the exact signaling mechanism utilized by KPV and related peptides currently is unknown it has been demonstrated already that significant similarities between anti-inflammatory signaling of α-MSH and those short peptides exist. These α-MSH related tripeptides thus may be useful alternatives for anti-inflammatory peptide therapy. KdPT, a derivative of KPV corresponding to IL-1β193–195, currently is emerging as another tripeptide with potent anti-inflammatory effects. A more limited spectrum of biologic activities, potentially advantageous physicochemical, pharmacokinetic and pharmacodynamic properties as well as the expectation of low costs for pharmaceutical production make these agents interesting candidates for the treatment of immune-mediated inflammatory skin and bowel diseases, allergic asthma and arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lipton JM, Catania A. Anti-inflammatory actions of the neuroimmunomodulator alpha-MSH. Immunol Today 1997; 18:140–145.

    Article  CAS  PubMed  Google Scholar 

  2. Getting SJ. Targeting melanocortin receptors as potential novel therapeutics. Pharmacol Ther 2006; 111:1–15.

    Article  CAS  PubMed  Google Scholar 

  3. Luger TA, Scholzen TE, Brzoska T et al. New insights into the functions of alpha-MSH and related peptides in the immune system. Ann N Y Acad Sci 2003; 994:133–140.

    Article  CAS  PubMed  Google Scholar 

  4. Haskell-Luevano C, Sawyer TK, Hendrata S et al. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity. Peptides 1996; 17:995–1002.

    CAS  PubMed  Google Scholar 

  5. Mountjoy KG, Robbins LS, Mortrud MT et al. The cloning of a family of genes that encode the melanocortin receptors. Science 1992; 257:1248–1251.

    Article  CAS  PubMed  Google Scholar 

  6. Cone RD, Lu D, Koppula S et al. The melanocortin receptors: agonists, antagonists and the hormonal control of pigmentation. Recent Prog Horm Res 1996; 51:287–318.

    CAS  PubMed  Google Scholar 

  7. Schiöth HB, Muceniece R, Larsson M et al. Binding of cyclic and linear MSH core peptides to the melanocortin receptor subtypes. J Pharmacol 1997; 319:369–373.

    Google Scholar 

  8. Elliott RJ, Szabo M, Wagner MJ et al. Alpha-Melanocyte-stimulating hormone, MSH 11–13 KPV and adrenocorticotropic hormone signalling in human keratinocyte cells. J Invest Dermatol 2004; 122:1010–1019.

    Article  CAS  PubMed  Google Scholar 

  9. Englaro W, Rezzonico R, Durand-Clement M et al. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J Biol Chem 1995; 270:24315–24320.

    Article  CAS  PubMed  Google Scholar 

  10. Böhm M, Luger TA, Tobin DJ et al. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J Invest Dermatol 2006; 126:1966–1975.

    Article  PubMed  Google Scholar 

  11. Colombo G, Buffa R, Bardella MT et al. Anti-inflammatory effects of alpha-melanocyte-stimulating hormone in celiac intestinal mucosa. Neuroimmunomodulation 2002; 10:208–216.

    Article  CAS  PubMed  Google Scholar 

  12. Bhardwaj R, Becher E, Mahnke K et al. Evidence for the differential expression of the functional alpha-melanocyte-stimulating hormone receptor MC-1 on human monocytes. J Immunol 1997; 158:3378–3384.

    CAS  PubMed  Google Scholar 

  13. Cooper A, Robinson SJ, Pickard C et al. Alpha-melanocyte-stimulating hormone suppresses antigen-induced lymphocyte proliferation in humans independently of melanocortin 1 receptor gene status. J Immunol 2005; 175:4806–4813.

    CAS  PubMed  Google Scholar 

  14. Andersen GN, Hagglund M, Nagaeva O et al. Quantitative measurement of the levels of melanocortin receptor subtype 1, 2, 3 and 5 and pro-opiomelanocortin peptide gene expression in subsets of human peripheral blood leucocytes. Scand J Immunol 2005; 61:279–284.

    Article  CAS  PubMed  Google Scholar 

  15. Catania A, Rajora N, Capsoni F et al. The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 1996; 17:675–679.

    Article  CAS  PubMed  Google Scholar 

  16. Schiöth HB, Mutulis F, Muceniece R et al. Selective properties of C-and N-terminals and core residues of the melanocyte-stimulating hormone on binding to the human melanocortin receptor subtypes. Eur J Pharmacol 1998; 349:359–366.

    Article  PubMed  Google Scholar 

  17. Tatro JB, Entwistle ML. Heterogeneity of brain melanocortin receptors suggested by differential ligand binding in situ. Brain Res 1994; 635:148–158.

    Article  CAS  PubMed  Google Scholar 

  18. Lyson K, Ceriani G, Takashima A et al. Binding of anti-inflammatory alpha-melanocyte-stimulating-hormone peptides and proinflammatory cytokines to receptors on melanoma cells. Neuroimmunomodulation 1994; 1:121–126.

    Article  CAS  PubMed  Google Scholar 

  19. Mandrika I, Muceniece R, Wikberg JE. Effects of melanocortin peptides on lipopolysaccharide/interferon-gamma-induced NF-kappaB DNA binding and nitric oxide production in macrophage-like RAW 264.7 cells: evidence for dual mechanisms of action. Biochem Pharmacol 2001; 161:613–621.

    Article  Google Scholar 

  20. Delgado R, Carlin A, Airaghi L et al. Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. J Leukoc Biol 1998; 63:740–745.

    CAS  PubMed  Google Scholar 

  21. Getting SJ, Schiöth HB, Perretti M. Dissection of the anti-inflammatory effect of the core and C-terminal (KPV) alpha-melanocyte-stimulating hormone peptides. J Pharmacol Exp Ther 2003; 306:631–637.

    Article  CAS  PubMed  Google Scholar 

  22. Schiöth HB, Muceniece R, Mutule I et al. New melanocortin 1 receptor binding motif based on the C-terminal sequence of alpha-melanocyte-stimulating hormone. Basic Clin Pharmacol Toxicol 2006; 99:287–293.

    Article  PubMed  Google Scholar 

  23. Poole S, Bristow AF, Lorenzetti BB et al. Peripheral analgesic activities of peptides related to alpha-melanocyte stimulating hormone and interleukin-1 beta 193–195. Br J Pharmacol 1992; 106:489–492.

    CAS  PubMed  Google Scholar 

  24. Mugridge KG, Perretti M, Ghiara P et al. Alpha-melanocyte-stimulating hormone reduces interleukin-1 beta effects on rat stomach preparations possibly through interference with a type I receptor. Eur J Pharmacol 1991; 197:151–155.

    Article  CAS  PubMed  Google Scholar 

  25. Ichiyama T, Sakai T, Catania A et al. Inhibition of peripheral NF-kappaB activation by central action of alpha-melanocyte-stimulating hormone. J Neuroimmunol 1999; 99:211–217.

    Article  CAS  PubMed  Google Scholar 

  26. Dalmasso G, Charrier-Hisamuddin L, Thu Nguyen HT et al. PepT1-mediated tripeptide KPV uptake reduces intestinal inflammation. Gastroenterology 2008; 134:166–178.

    Article  CAS  PubMed  Google Scholar 

  27. Wong KY, Rajora N, Boccoli G et al. A potential mechanism of local anti-inflammatory action of alpha-melanocyte-stimulating hormone within the brain: modulation of tumor necrosis factor-alpha production by human astrocytic cells. Neuroimmunomodulation 1997; 4:37–41.

    CAS  PubMed  Google Scholar 

  28. Galimberti D, Baron P, Meda L et al. Alpha-MSH peptides inhibit production of nitric oxide and tumor necrosis factor-alpha by microglial cells activated with beta-amyloid and interferon gamma. Biochem Biophys Res Commun 1999; 263:251–256.

    Article  CAS  PubMed  Google Scholar 

  29. Muceniece R, Krigere L, Suli-Vargha H et al. Effects of alpha-melanotropin C-terminal tripeptide analogues on macrophage NO production. Peptides 2003; 24:701–707.

    Article  CAS  PubMed  Google Scholar 

  30. Moustafa M, Szabo M, Ghanem GE et al. Inhibition of tumor necrosis factor-alpha stimulated NFkappaB/ p65 in human keratinocytes by alpha-melanocyte stimulating hormone and adrenocorticotropic hormone peptides. J Invest Dermatol 2002; 119:1244–1253.

    Article  CAS  PubMed  Google Scholar 

  31. Barcellini W, Colombo G, La Maestra L et al. Alpha-melanocyte-stimulating hormone peptides inhibit HIV-1 expression in chronically infected promonocytic U1 cells and in acutely infected monocytes. J Leukoc Biol 2000; 68:693–699.

    CAS  PubMed  Google Scholar 

  32. Haddad JJ, Lauterbach R, Saade NE et al. Alpha-melanocyte-related tripeptide, Lys-d-Pro-Val, ameliorates endotoxin-induced nuclear factor kappaB translocation and activation: evidence for involvement of an interleukin-1beta193-195 receptor antagonism in the alveolar epithelium. Biochem J 2001; 355:29–38.

    Article  CAS  PubMed  Google Scholar 

  33. Hiltz ME, Catania A, Lipton JM. Anti-inflammatory activity of alpha-MSH(11–13) analogs: influences of alteration in stereochemistry. Peptides 1991; 12:767–771.

    Article  CAS  PubMed  Google Scholar 

  34. Bhardwaj RS, Schwarz A, Becher E et al. Pro-opiomelanocortin-derived peptides induce IL-10 production in human monocytes. J Immunol 1996; 156:2517–2521.

    CAS  PubMed  Google Scholar 

  35. Böhm M, Wolff I, Scholzen TE et al. Alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem 2005; 280:5795–5802.

    Article  PubMed  Google Scholar 

  36. Richards DB, Lipton JM. Effect of alpha-MSH 11–13 (lysine-proline-valine) on fever in the rabbit. Peptides 1984; 5:815–817.

    Article  CAS  PubMed  Google Scholar 

  37. Deeter LB, Martin LW, Lipton JM. Antipyretic properties of centrally administered alpha-MSH fragments in the rabbit. Peptides 1989b; 9:1285–1288.

    Article  Google Scholar 

  38. Ichiyama T, Sakai T, Catania A et al. Systemically administered alpha-melanocyte-stimulating peptides inhibit NF-kappaB activation in experimental brain inflammation. Brain Res 1999; 836:31–37.

    Article  CAS  PubMed  Google Scholar 

  39. Hiltz ME, Lipton JM. Alpha-MSH peptides inhibit acute inflammation and contact sensitivity. Peptides 1990; 11:979–982.

    Article  CAS  PubMed  Google Scholar 

  40. Hiltz ME, Catania A, Lipton JM. Alpha-MSH peptides inhibit acute inflammation induced in mice by rIL-1 beta, rIL-6, rTNF-alpha and endogenous pyrogen but not that caused by LTB4, PAF and rIL-8. Cytokine 1992; 4:320–328.

    Article  CAS  PubMed  Google Scholar 

  41. Macaluso A, McCoy D, Ceriani G et al. Antiinflammatory influences of alpha-MSH molecules: central neurogenic and peripheral actions. J Neurosci 1994; 14:2377–2382.

    CAS  PubMed  Google Scholar 

  42. Ceriani G, Macaluso A, Catania A et al. Central neurogenic antiinflammatory action of alpha-MSH: modulation of peripheral inflammation induced by cytokines and other mediators of inflammation. Neuroendocrinology 1994; 59:138–143.

    Article  CAS  PubMed  Google Scholar 

  43. Hiltz ME, Lipton JM. Antiinflammatory activity of a COOH-terminal fragment of the neuropeptide alpha-MSH. FASEB J 1989; 3:2282–2284.

    CAS  PubMed  Google Scholar 

  44. Ferreira SH, Lorenzetti BB, Bristow AF et al. Interleukin-1 β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 1988; 334:698–700.

    Article  CAS  PubMed  Google Scholar 

  45. Oluyomi AO, Poole S, Smith TW et al. Antinociceptive activity of peptides related to interleukin-1 beta-(193–195), Lys-Pro-Thr. Eur J Pharmacol 1994; 258:131–138.

    Article  CAS  PubMed  Google Scholar 

  46. Maaser C, Kannengiesser K, Lügering A et al. Successful treatment of murine colitis with the tripeptide KPV. Gastroenterology 2005; 128:A–2001.

    Google Scholar 

  47. Maser C, Bettenworth D, Lügering A et al. Therapeutischer Einsatz des Tripeptids K(D)PT im murinen DSS-Modell. Z Gastroenterol 2006; 44:724.

    Google Scholar 

  48. Kannengiesser K, Maaser C, Heidemann J et al. Melanocortin-derived tripeptide KPV has anti-inflammatory potential in murine models of inflammatory bowel disease. Inflamm Bowel Dis 2008; 14:324–331.

    Article  PubMed  Google Scholar 

  49. Harms J, Lautenschlager S, Minder CE et al. An alpha-melanocyte-stimulating hormone analogue in erythropoietic protoporphyria. N Engl J Med 2009; 360(3):306–307.

    Article  CAS  PubMed  Google Scholar 

  50. Evans-Brown M, Dawson RT, Chandler M et al. Use of melanotan I and II in the general population. BMJ 2009; 338:424–425.

    Article  Google Scholar 

  51. Lipton JM. Modulation of host defense by the neuropeptide alpha-MSH. Yale J Biol Med 1990; 63:173–182.

    CAS  PubMed  Google Scholar 

  52. Potaman VN, Alfeeva LY, Kamensky AA et al. Degradation of ACTH/MSH(4–10) and its synthetic analog semax by rat serum enzymes: an inhibitor study. Peptides 1993; 14:491–495.

    Article  CAS  PubMed  Google Scholar 

  53. Castrucci AM, Hadley ME, Sawyer TK et al. Enzymological studies of melanotropins. Comp Biochem Physiol 1984; 78:519–524.

    CAS  Google Scholar 

  54. Marks N, Stern F, Kastin AJ. Biodegradation of alpha-MSH and derived peptides by rat brain extracts and by rat and human serum. Brain Res Bull 1976; 1:591–593.

    Article  CAS  PubMed  Google Scholar 

  55. Trochard MC, Vaudry H, Leboulenger F et al. The degradation of radioiodinated alpha MSH in vitro: effect of some inhibitors of proteolytic enzymes. C R Seances Soc Biol Fil 1976; 170:1103–1109.

    CAS  PubMed  Google Scholar 

  56. Deschodt-Lanckman M, Vanneste Y, Loir B et al. Degradation of alpha-melanocyte stimulating hormone (alpha-MSH) by CALLA/endopeptidase 24.11 expressed by human melanoma cells in culture. Int J Cancer 1990; 46:1124–1130.

    Article  CAS  PubMed  Google Scholar 

  57. Aberdam E, Auberger P, Ortonne JP et al. Neprilysin, a novel target for ultraviolet B regulation of melanogenesis via melanocortins. J Invest Dermatol 2000; 115:381–387.

    Article  CAS  PubMed  Google Scholar 

  58. Hruby VJ, Wilkes BC, Hadley ME et al. Alpha-Melanotropin: the minimal active sequence in the frog skin bioassay. J Med Chem 1987; 30:2126–2130.

    Article  CAS  PubMed  Google Scholar 

  59. Meyer KC, Brzoska T, Abels C et al. The alpha-melanocyte stimulating hormone-related tripeptide K(D)PT stimulates human hair follicle pigmentation in situ under proinflammatory conditions. Br J Dermatol 2008; 160:433–437.

    Article  PubMed  Google Scholar 

  60. Kang L, McIntyre KW, Gillooly KM et al. A selective small molecule agonist of the melanocortin-1 receptor inhibits lipopolysaccharide-induced cytokine accumulation and leukocyte infiltration in mice. J Leukoc Biol 2006; 80:897–904.

    Article  CAS  PubMed  Google Scholar 

  61. Ugwu SO, Blanchard J, Dorr RT et al. Skin pigmentation and pharmacokinetics of melanotan-I in humans. Bioph Drug 1997; 18:259–269.

    Article  CAS  Google Scholar 

  62. Dorr RT, Dvorakova K, Brooks C et al. Increased eumelanin expression and tanning is induced by a superpotent melanotropin [Nle4-D-Phe7]-alpha-MSH in humans. Photochem Photobiol 2000; 72:526–532.

    Article  CAS  PubMed  Google Scholar 

  63. Dorr RT, Ertl G, Levine N et al. Effects of a superpotent melanotropic peptide in combination with solar UV radiation on tanning of the skin in human volunteers. Arch Dermatol 2004; 140:827–835.

    Article  CAS  PubMed  Google Scholar 

  64. Hadley ME, Dorr RT. Melanocortin peptide therapeutics: historical milestones, clinical studies and commercialization. Peptides 2006; 27:921–930.

    Article  CAS  PubMed  Google Scholar 

  65. Baugh JA, Bucala R. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr Opin Drug Discov Devel 2001; 4:635–650.

    CAS  PubMed  Google Scholar 

  66. Cutuli M, Cristiani S, Lipton JM et al. Antimicrobial effects of alpha-MSH peptides. J Leukoc Biol 2000; 67:233–239.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brzoska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brzoska, T., Böhm, M., Lügering, A., Loser, K., Luger, T.A. (2010). Terminal Signal: Anti-Inflammatory Effects of α-Melanocyte-Stimulating Hormone Related Peptides Beyond the Pharmacophore. In: Catania, A. (eds) Melanocortins: Multiple Actions and Therapeutic Potential. Advances in Experimental Medicine and Biology, vol 681. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6354-3_8

Download citation

Publish with us

Policies and ethics