Skip to main content

Feedback Control of Microflows

  • Chapter
  • First Online:
Feedback Control of MEMS to Atoms

Abstract

This chapter gives an overview of methods we have developed and experimental results we have achieved for precision feedback control of flows and objects inside microfluidic systems. Essentially, we are doing flow control, but flow control on the microscale, and further even to nanoscale accuracy, to precisely and robustly manipulate liquid packets, particles (e.g., cells and quantum dots), and micro- and nanoobjects (e.g., nanowires). Target applications include methods to miniaturize the operations of a biological laboratory (lab-on-a-chip), e.g., presenting pathogens to on-chip sensing cells or extracting cells from messy biosamples such as saliva, urine, or blood; as well as nonbiological applications such as deterministically placing quantum dots on photonic crystals to make multidot quantum information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Northrup, et al. A Miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry, 1998. 70(5): p. 918–922.

    Google Scholar 

  2. R. Jabeen, et al. Capillary electrophoresis and the clinical laboratory. Electrophoresis. 27(12): p. 2413–2438.

    Google Scholar 

  3. D. Figeys. Adapting arrays and Lab-on-a-chip technology for proteomics. Proteomics, 2002. 2(4): p. 373–382.

    Google Scholar 

  4. J. Seo, et al. Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Applied Physics Letters, 2004. 84(11): p. 1973–1975.

    Google Scholar 

  5. G. Spera. Implantable pumps improve drug deliver, strengthen weak hearts. Medical Devices & Diagnostic Industry Magazine, 1997.

    Google Scholar 

  6. M. Gad-el-Hak, ed. MEMS: Design and fabrication 2ed. The MEMS handbook. Vol. 2. 2006, CRC Press, Taylor and Francis Group. 664.

    Google Scholar 

  7. C.T. Leondes, ed. Fabrication Techniques for MEMS/NEMS. MEMS/NEMS handbook. 2006, Springer: New York, NY.

    Google Scholar 

  8. K.E. Herold and A. Rasooly, eds. Fabrication and microfluidics. Lab on a chip technology. Vol. 1. 2009, Caister Academic Press Norfolk, UK. 409.

    Google Scholar 

  9. C.A. Mack. Fundamental principles of optical lithography: The science of microfabrication. 2008, West Sussex, England: John Wiley and Sons Ltd. 534.

    Google Scholar 

  10. M. Meyyappan. A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal of Physics D-Applied Physics, 2009. 42(21).

    Google Scholar 

  11. R. Bogwe. Self-assembly: a review of recent developments. Assembly Automation, 2008. 28(3): p. 211–215.

    Google Scholar 

  12. J.C. Huie. Guided molecular self-assembly: a review of recent efforts. Smart Materials & Structures, 2003. 12(2): p. 264–271.

    Google Scholar 

  13. S.D. Minteer, ed. Microfluidic Techniques: Reviews and protocols (Methods in molecular biology). Methods in molecular biology. Vol. 321. 2005, Humana Press: Clifton, New Jersey. 247.

    Google Scholar 

  14. P. Kim, et al. Soft lithography for microfluidics: a review. Biochip Journal, 2008. 2(1): p. 1–11.

    Google Scholar 

  15. R.L. Panton. Incompressible flow. 2 ed. 1996, New York, NY: John Wiley & Sons, Inc.

    Google Scholar 

  16. G.E. Karniadakis and A. Beskok. Micro flows: Fundamentals and simulation. 2001, New York, NY: Springer Verlag.

    Google Scholar 

  17. A. Beskok. Physical challenges and simulation of micro fluidic transport. in 39th Aerospace Sciences Meeting & Exhibit. 2001. Reno, Nevada: AIAA.

    Google Scholar 

  18. M. Gad-el-Hak. The fluid mechanics of microdevices – The freeman scholar lecture. Journal of Fluids Engineering, 1999. 121: p. 5.

    Google Scholar 

  19. S. Walker and B. Shapiro. Modeling the fluid dynamics of electro-wetting on dielectric (EWOD). Journal of Micro-Electro-Mechanical Systems, 2006. 15(4): p. 986–1000.

    Google Scholar 

  20. S. Chaudhary and B. Shapiro. Arbitrary steering of multiple particles at once in an electroosmotically driven microfluidic system. IEEE Transactions on Control Systems Technology, 2006. 14(4): p. 669–680.

    Google Scholar 

  21. L. Pauling. General chemistry. 1970, New York: Dover Publications, Inc.

    Google Scholar 

  22. S.R. Quake and T.M. Squires. Microfluidics: Fluid physics at the nanoliter scale. Reviews of Modern Physics, 2005. bf 77(3): p. 977–1026.

    Google Scholar 

  23. M.H. Oddy, J.G. Santiago, and J.C. Mikkelson. Electrokinetic instability micromixing. Analytical Chemistry, 2001. 73(24): p. 5822–32.

    Google Scholar 

  24. J. Fowler, H. Moon, and C.J. Kim. Enhancement of mixing by droplet-based microfluidics. IEEE Conf. MEMS, Las Vegas, NV, 2002: p. 97–100.

    Google Scholar 

  25. I. Glasgow and N. Aubry. Enhancement of microfluidic mixing using time pulsing. Lab on a Chip, 2003. 3(2): p. 114–120.

    Google Scholar 

  26. K.J. Astrom and R.M. Murray. Feedback systems: An introduction for scientists and engineers, 2006. Princeton University Press. 2008.

    Google Scholar 

  27. J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. 1992, New York, NY: Macmillan Publishing Company.

    Google Scholar 

  28. R.M. Murray, et al. Control in an information rich world. 2002, Air Force Office of Scientific Research (AFOSR).

    Google Scholar 

  29. F. Mugele and J. Baret. Electrowetting: from basics to applications. journal of physics: condensed matter, 2005. 17: p. R705–R774.

    Google Scholar 

  30. J. Lee, et al. Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensor Actuat. A-Phys, 2002. 95: p. 269.

    Google Scholar 

  31. S. Fusayo, et al. Electrowetting on dielectrics (EWOD): Reducing voltage requirements for microfluidics. Polymeric Materials: Science & Engineering, 2001. 85: p. 12–13.

    Google Scholar 

  32. H. Ren, et al. Dynamics of electro-wetting droplet transport. Sensors and Actuators B-Chemical, 2002. 87(1): p. 201–206.

    Google Scholar 

  33. E. Seyrat and R.A. Hayes. Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting. Journal of Applied Physics, 2001. 90(3).

    Google Scholar 

  34. R.A. Hayes and B.J. Feenstra. Video-speed electronic paper based on electrowetting. Nature, 2003. 425(6956): p. 383–385.

    Google Scholar 

  35. T. Roques-Carmes, R.A. Hayes, and L.J.M. Schlangen. A physical model describing the electro-optic behavior of switchable optical elements based on electrowetting. Journal of Applied Physics, 2004. 96(11): p. 6267–6271.

    Google Scholar 

  36. T. Roques-Carmes, et al. Liquid behavior inside a reflective display pixel based on electrowetting. Journal of Applied Physics, 2004. 95(8): p. 4389–4396.

    Google Scholar 

  37. B. Berge and J. Peseux. Variable focal lens controlled by an external voltage: An application of electrowetting. European Physical Journal E, 2000. 3(2): p. 159–163.

    Google Scholar 

  38. C. Quilliet and B. Berge. Electrowetting: a recent outbreak. Current Opinion in Colloid & Interface Science, 2001. 6(1): p. 34–39.

    Google Scholar 

  39. S.K. Cho, H. Moon, and C.J. Kim. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003. VOL. 12(NO. 1): p. 70–80.

    Google Scholar 

  40. M.G. Pollack, R.B. Fair, and A.D. Shenderov. Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters, 2000. 77(11).

    Google Scholar 

  41. H.J.J. Verheijen and W.J. Prins. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir, 1999. 15: p. 6616–6620.

    Google Scholar 

  42. B. Berge. Electrocapillarity and wetting of insulator films by water. Comptes Rendus de l Academie des Sciences Series II, 1993. 317(2): p. 157–163.

    Google Scholar 

  43. B. Shapiro, et al. Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. Journal of Applied Physics, 2003. 93(9).

    Google Scholar 

  44. M. Armani, et al. Control of micro-fluidic systems: Two examples, results, and challenges. International Journal of Robust and Nonlinear Control., 2005. 15(16): p. 785–803.

    Google Scholar 

  45. S.W. Walker, B. Shapiro, and R.H. Nochetto. Electrowetting with contact line pinning: Computational modeling and comparisions with experiments. Physics of Fluids, 2009. 23(10): p. 102103.

    MATH  Google Scholar 

  46. K. Zhou, J.C. Doyle, and K. Glover. Robust and optimal control. 1996: Prentice Hall, New Jersey.

    Google Scholar 

  47. A. Isidori. Nonlinear control systems. 3 ed. Communications and control engineering. 1995: Springer.

    Google Scholar 

  48. G. Lippmann. Relation entre les phenomenes electriques et capillaires. Ann. Chim. Phys., 1875. 5: p. 494–549.

    Google Scholar 

  49. R.F. Probstein. Physicochemical Hydrodynamics: An introduction. 2 ed. 1994, New York: John Wiley and Sons, Inc.

    Google Scholar 

  50. P.C. Hiemenz and R. Rajagopalan. Principles of colloid and surface chemistry. 3 ed. 1997, New York, Basel, Hong Kong: Marcel Dekker, Inc.

    Google Scholar 

  51. R.P. Feynman, R.B. Leighton, and M. Sands. The feynman lectures on physics. 1964: Addison-Wesley Publishing Company.

    Google Scholar 

  52. S.W. Walker. Modeling, simulating, and controlling the fluid dynamics of electro-wetting on dielectric, in aerospace engineering. 2007, University of Maryland: College Park.

    Google Scholar 

  53. H.W. Lu, et al. A diffuse interface model for electrowetting droplets in a hele-shaw cell. J. Fluid Mech, 2007. 590: pp. 411–435.

    Google Scholar 

  54. H.S. Hele-Shaw. The flow of water. Nature, 1898. 58: p. 34–35.

    Google Scholar 

  55. G.K. Batchelor. An Introduction to fluid dynamics. 1967: Cambridge University Press.

    Google Scholar 

  56. M.P. do Carmo. Differential geometry of curves and surfaces. 1976, Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  57. T.D. Blake. The physics of moving wetting lines. Journal of Colloid and Interface Science, 2006. 299: p. 1–13.

    Google Scholar 

  58. S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. 2003: Springer-Verlag New York.

    Google Scholar 

  59. S.A. Sethian. Level set methods & fast marching methods. 2 ed. 1999: Cambridge University Press.

    Google Scholar 

  60. R. Caiden, R. Fedkiw, and C. Anderson. A numerical method for two phase flow consisting of separate compressible and incompressible regions. J. Comput. Phys., 2001. 166: p. 1–27.

    MATH  Google Scholar 

  61. P. Smereka. Semi-implicit level set methods for curvature and surface diffusion motion. Journal of Scientific Computing, 2003. 19(1–3): p. 439–456.

    MathSciNet  MATH  Google Scholar 

  62. W.J. Rider and D.B. Kothe. Stretching and tearing interface tracking methods, in 12th AIAA CFD Conference. 1995.

    Google Scholar 

  63. H.C. Kuhlmann and H.J. Rath. Free surface flows 1ed. CISM courses and lectures, international centre for mechanical sciences. Vol. 39, New York, NY: Springer. 300.

    Google Scholar 

  64. D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics, 2002. 183: p. 83.

    MathSciNet  MATH  Google Scholar 

  65. F. Losasso, F. Gibou, R. Fedkiw. Simulating water and smoke with an octree data structure. in ACM Trans. Graph. (SIGGRAPH Proc.). 2004.

    Google Scholar 

  66. X. Yang, et al. An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. Journal of Computational Physics 2006. 217(2): p. 364–394

    Google Scholar 

  67. S.W. Walker. A hybrid variational-level set approach to handle topological changes, in mathematics. 2007, University of Maryland: College Park.

    Google Scholar 

  68. C.J. Kim. Micropumping by electrowetting. in Int. mechanical engineering congress and exposition, New York, NY, IMECE2001/HTD-24200. 2001.

    Google Scholar 

  69. V. Srinivasan, V. Pamula, M. Pollack, and R. Fair. A digital microfluidic biosensor for multianalyte detection. in Proceedings of the IEEE 16th Annual International Conference on Micro Electro Mechanical Systems. 2003.

    Google Scholar 

  70. P. Paik, V.K. Pamula, and R.B. Fair. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip, 2003. 3: p. 253–259.

    Google Scholar 

  71. S.K. Cho, H. Moon, J. Fowler, S.K. Fan, and C.J. Kim. Splitting a liquid droplet for electrowetting-based microfluidics. in Int. mechanical engineering congress and exposition, New York, NY, IMECE2001/MEMS-23831. 2001.

    Google Scholar 

  72. S. Walker and B. Shapiro. A control method for steering individual particles inside liquid droplets actuated by electrowetting. Lab on a Chip, 2005. 12(1): p. 1404–1407.

    Google Scholar 

  73. F.L. Lewis, and V.L. Syrmos. Optimal control. 2nd ed. 1995, New York, NY: Wiley-Interscience. 560.

    Google Scholar 

  74. K.W. Morton, and D.F. Mayers. Numerical solution of partial differential equations. 1994: Cambridge University Press. 239.

    Google Scholar 

  75. G. Strang. Linear algebra and its applications. 3 ed. 1988, New York, NY: Brooks Cole. 520.

    Google Scholar 

  76. E.C. Zachmanoglou and D.W. Thoe. Introduction to partial differential equations with applications. 1986, New York, NY: Dover Publications, Inc.

    Google Scholar 

  77. A. Ralston, and P. Rabinowitz. A first course in numerical analysis. 2nd ed. 2001, Mineola, NY: Dover.

    Google Scholar 

  78. L. Jauffred, A.C. Richardson, and L.B. Oddershede. Three-dimensional optical control of individual quantum dots. Nano Letters. 8(10): p. 3376–3380.

    Google Scholar 

  79. A. Ashkin, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters. 11(5): p. 288–290.

    Google Scholar 

  80. C. Pei-Yu, et al. Light-actuated AC electroosmosis for nanoparticle manipulation. Microelectromechanical Systems, Journal of. 17(3): p. 525–531.

    Google Scholar 

  81. A.H.J. Yang, et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature. 457(7225): p. 71–75.

    Google Scholar 

  82. A. Ashkin. History of optical trapping and manipulation of small-neutral particles, atoms, and molecules. IEEE Journal on Selected Topics in Quantum Electronics, 2000. 6(6): p. 841–856.

    Google Scholar 

  83. M. Armani, et al. Using feedback control and micro-fluidics to independently steer multiple particles. Journal of Micro-Electro-Mechanical Systems, 2006. 15(4): p. 945–956.

    Google Scholar 

  84. C. Ropp, et al. Manipulating quantum dots to nanometer precision by control of flow. Nano Letters, 2010. 10(7): p. 2525–2530.

    Google Scholar 

  85. K.C. Neuman and A. Nagy. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Meth. 5(6): p. 491–505.

    Google Scholar 

  86. H. Zhang and K.K. Liu. Optical tweezers for single cells. Journal of the Royal Society, Interface/the Royal Society. 5(24): p. 671–690.

    Google Scholar 

  87. F. Qian, et al. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. Review of Scientific Instruments. 75 (9): p. 2937–2942.

    Google Scholar 

  88. R.Probst, B.Shapiro, 3-dimensional electrokinetic tweezing: Device design, modeling, and control algorithms, Journal of Micromechanics and Microengineering, 2011 21(2)

    Google Scholar 

  89. C. Ropp, et al. Positioning and immobilization of individual quantum dots with nanoscale precision. Nano Letters, 2010. 10 p. 4673–4679.

    Google Scholar 

  90. L.E. Locascio, C.E. Perso, and C.S. Lee. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. Journal of Chromotography A, 1999. 857: p. 275–284.

    Google Scholar 

  91. D.J. Harrison, et al. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip. Science, 1993. 261(5123): p. 895–897.

    Google Scholar 

  92. A. Manz, et al. Electroosmotic pumping and electrophoretic separations for miniaturized chemical-analysis systems. Journal of Micromechanics and Microengineering, 1994. 4(4): p. 257–265.

    Google Scholar 

  93. W. Korohoda and A. Wilk. Cell electrophoresis — a method for cell separation and research into cell surface properties. Cellular & Molecular Biology Letters. 13(2): p. 312–326.

    Google Scholar 

  94. J.N. Mehrishi and J. Bauer. Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis. 23(13): p. 1984–1994.

    Google Scholar 

  95. G.G. Slivinsky, et al. Cellular electrophoretic mobility data: A first approach to a database. Electrophoresis. 18(7): p. 1109–1119.

    Google Scholar 

  96. F. Schonfeld. CμFD – Case study: Flow patterning by phase-shifted electroosmotic flows, in comsol user’s conference 2006: Frankfurt, Germany.

    Google Scholar 

  97. S. Chaudhary and B. Shapiro. Arbitrary steering of multiple particles at once in an electroosmotically driven micro fluidic system. IEEE Trans. on Control Systems Technologies, 2005: 14669–680.

    Google Scholar 

  98. T. Zhou, et al. Time-dependent starting profile of velocity upon application of external electrical potential in electroosmotic driven microchannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006. 277 (1–3): p. 136–144.

    Google Scholar 

  99. D. Yan, et al. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique. The Journal of Chemical Physics. 124(2): p. 021103–4.

    Google Scholar 

  100. M.A. Henderson. The interaction of water with solid surfaces: fundamental aspects revisited. Surface Science Reports, 2002. 46(1–8): p. 1–308.

    Google Scholar 

  101. J. Lyklema, et al. Fundamentals of interface and colloid science.

    Google Scholar 

  102. M. Armani, et al. Using feedback control and micro-fluidics to steer individual particles. in 18th IEEE International Conference on Micro Electro Mechanical Systems. 2005. Miami, Florida.

    Google Scholar 

  103. I. Rodriguez and N. Chandrasekhar. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices. Electrophoresis, 2005. 26(6): p. 1114–1121.

    Google Scholar 

  104. A. Badolato, et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science. 308(5725): p. 1158–1161.

    Google Scholar 

  105. K. Hennessy, et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature. 445(7130): p. 896–899.

    Google Scholar 

  106. D. Englund, et al. Controlling cavity reflectivity with a single quantum dot. Nature. 450(7171): p. 857–861.

    Google Scholar 

  107. A.V. Akimov, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature. 450(7168): p. 402–406.

    Google Scholar 

  108. D.E. Chang, et al. A single-photon transistor using nanoscale surface plasmons. Nat Phys. 3(11): p. 807–812.

    Google Scholar 

  109. Y. Akhane, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003. 425: p. 944–947.

    Google Scholar 

  110. Q. Zhang, et al. Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot. Opt. Express. 16(24): p. 19599, 19592–19599, 19592.

    Google Scholar 

  111. J. Liu, et al. Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays. Lab on a Chip. 9(9): p. 1301–1305.

    Google Scholar 

  112. J.T. Fourkas and L. Li. Multiphoton polymerization. Mater. Today, 2007. 10(6): p. 30–37.

    Google Scholar 

  113. R.E. Thompson, D.R. Larson, and W.W. Webb. Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal, 2002. 82(5): p. 2775–2783.

    Google Scholar 

  114. L.J. Li and J.T. Fourkas. Multiphoton polymerization. Materials Today, 2007. 10(6): p. 30–37.

    Google Scholar 

  115. P. Mathai, A. Berglund, A. Liddle, B. Shapiro, Simultaneous positioning and orientation of a single nano-object by flow control, New Journal of Physics, 13: p. 013027, 19 January 2011.

    Google Scholar 

  116. B. Shapiro, et al. Control to concentrate drug-coated magnetic particles to deep-tissue tumors for targeted cancer chemotherapy. in 46th IEEE Conference on Decision and Control. 2007. New Orleans, LA.

    Google Scholar 

  117. B. Shapiro, et al. Dynamic control of magnetic fields to focus drug-coated nano-particles to deep tissue tumors, in 7th International Conference on the Scientific and Clinical Applications of Magnetic Carriers. 2008: Vancouver, British Columbia.

    Google Scholar 

  118. B. Shapiro. Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. Journal of Magnetism and Magnetic Materials, 2009. 321(10): p. 1594–1599.

    Google Scholar 

  119. A.Komaee and B.Shapiro, Magnetic steering of a distributed ferrofluid towards a deep target with minimal spreading, In 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Dec 2011. Orlando, FL.

    Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the National Science Foundation (CAREER award), DARPA, and AFOSR. There is also current funding support from the National Institutes of Health to begin to transition these results from laboratory to medical research and clinical use. Success in this area relies on many collaborators that we would like to acknowledge and thank: Pamela Abshire, Andrew Berglund, Michael Emmert-Buck, Robin Garrell, “CJ” Kim, Alex Liddle, Andreas Lubbe, Ricardo Nochetto, Juan Santiago, Elisabeth Smela, and Ian White.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Armani, M. et al. (2012). Feedback Control of Microflows. In: Gorman, J., Shapiro, B. (eds) Feedback Control of MEMS to Atoms. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5832-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5832-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5831-0

  • Online ISBN: 978-1-4419-5832-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics