Skip to main content

Pediatric MR Angiography: Principles and Applications

  • Chapter
  • First Online:
Magnetic Resonance Angiography

Abstract

Magnetic resonance angiography is perhaps the most valuable in children when compared to all other patient groups. While CT angiography has made vast strides in imaging the neurovascular system in adults, these advances do not lend themselves to easy application in the pediatric patient population primarily due to the risk from the considerable radiation exposure that CT angiographic procedures entail. Likewise, conventional catheter angiography procedures also result in radiation exposure. While many CTA and conventional digital subtraction angiography procedures have been shown to result in radiation exposure which is less than the threshold for deterministic effects such as epilation or erythema, they nevertheless result in an increased risk for malignancy secondary to stochastic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swoboda NA, Armstrong DG, Smith J, Charkot E, Connolly BL. Pediatric patient surface doses in neuroangiography. Pediatr Radiol. 2005;35:859–866.

    Article  PubMed  Google Scholar 

  2. Glennie D, Connolly BL, Gordon C. Entrance skin dose measured with MOSFETs in children undergoing interventional radiology procedures. Pediatr Radiol. 2008;38:1180–1187.

    Article  PubMed  Google Scholar 

  3. Hollingsworth CL, Yoshizumi TT, Frush DP, et al. Pediatric cardiac-gated CT angiography: assessment of radiation dose. AJR Am J Roentgenol. 2007;189:12–18.

    Article  PubMed  Google Scholar 

  4. Raelson CA, Kanal KM, Vavilala MS, et al. Radiation dose and excess risk of cancer in children undergoing neuroangiography. AJR Am J Roentgenol. 2009;193:1621–1628.

    Article  PubMed  Google Scholar 

  5. Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res. 1996;146:1–27.

    Article  PubMed  CAS  Google Scholar 

  6. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res. 2003;160:381–407.

    Article  PubMed  CAS  Google Scholar 

  7. Yang CY, Chen YF, Lee CW, Huang A, Shen Y, Wei C, Liu HM. Multiphase CT angiography versus single-phase CT angiography: comparison of image quality and radiation dose. Am J Neuroradiol. 2008;29:1288–1295.

    Article  PubMed  Google Scholar 

  8. Strauss KJ, Goske MJ, Fursh DP, Butler PF, Morrison G. Image Gently Vendor Summit: working together for better estimates of pediatric radiation dose from CT. AJR Am J Roentgenol. 2009;192:1169–1175.

    Article  PubMed  Google Scholar 

  9. Bosmans H, Wilms G, Dymarkowski S, Marchal G. Basic principles of MRA. Eur J Radiol. 2001;38:2–9.

    Article  PubMed  CAS  Google Scholar 

  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic Resonance Imaging—Physical Principles and Sequence Design. New York: Wiley-Liss; 1999:10.

    Google Scholar 

  11. Blatter DD, Parker DL, Robison RO (1991) Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility. Radiology. 179:805–811.

    PubMed  CAS  Google Scholar 

  12. Atkinson D, Brant-Zawadzki M, Purdy D, Laub G. Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology. 1994;190:890–894.

    PubMed  CAS  Google Scholar 

  13. Ozsarlak O, Van Goethem JW, Parizel PM. 3D time-of-flight MR angiography of the intracranial vessels: optimization of the technique with water excitation, parallel acquisition, eight-channel phased-array head coil and low-dose contrast administration. Eur Radiol. 2004;14:2411–2444.

    Google Scholar 

  14. Ozsarlak O, Goethem JWV, Maes M, Parizel PM. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology. 2004;46:955–972.

    Article  PubMed  Google Scholar 

  15. Du YP, Jin Z, Hu Y, Tanabe J. Multi-echo acquisition of MR angiography and venography of the brain at 3 Tesla. J Magn Reson Imaging. 2009;30:449–454.

    Article  PubMed  Google Scholar 

  16. Deitsung A, Dittrich E, Sedalick J, Rauscher A, Reichenbach JR. ToF-SWI: simultaneous time of flight and fully flow compensated susceptibility weighted imaging. J Magn Reson Imaging. 2009;29:1478–1484.

    Article  Google Scholar 

  17. Tsuchiya K, Yoshida M, Imai M, Nitatori T, Kimura T, Ikedo M, Takemoto S. Hybrid of opposite-contrast magnetic resonance angiography of the brain by combining time-of-flight and black blood sequences: its value in Moyamoya disease. J Comput Assist Tomogr. 2010;34:242–246.

    Article  PubMed  Google Scholar 

  18. Marks MP, Pelc NJ, Ross MR, Enzmann DR. Determination of cerebral blood flow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformations. Radiology. 1992:182:467–476.

    PubMed  CAS  Google Scholar 

  19. Markl M, Chan FP, Alley MT, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2003:17:499–506.

    Article  PubMed  Google Scholar 

  20. Yamashita S, Isoda H, Hirano M, et al. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2007;25:473–478.

    Article  PubMed  Google Scholar 

  21. Velikina JV, Johnson KM, Wu Y, Samsonov AA, Turski P, MIstretta CA. PC HYPR flow: a technique for rapid imaging of contrast dynamics. J Magn Reson Imaging. 2010;31:447–456.

    Article  PubMed  Google Scholar 

  22. Korosec FR, Frayne R, Grist TM, et al. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36:345–351.

    Article  PubMed  CAS  Google Scholar 

  23. Muthupillai R, Vick GW, Flamm SD and Chung T. Time-resolved contrast-enhanced magnetic resonance angiography in pediatric patients using sensitivity encoding. J Magn Reson Imaging. 2003;17:55–564.

    Article  Google Scholar 

  24. Pinto C, Hickey R, Carroll TJ, et al. Time-resolved MR angiography with generalized autocalibrating partially parallel acquisition and time-resolved echosharing angiographic technique for hemodialysis arteriovenous fistulas and grafts. J Vasc Interv Radiol. 2006;17:1003–1009.

    Article  PubMed  Google Scholar 

  25. Lim RP, Shapiro M, Wang EY. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced bolus-chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol. 2008;29:1847–1854.

    Article  PubMed  CAS  Google Scholar 

  26. Jeong HY, Cashen TA, Hurley MC, Eddleman C, Getch C, Batjer H, Carroll TJ. Radial sliding-window magnetic resonance angiography (MRA) with highly-constrained projection reconstruction (HYPR). Magn Reson Med. 2009;61:1103–1113.

    Article  PubMed  Google Scholar 

  27. Eddleman CS, Jeong HY, Hurley MC, Zuehlsdorff S, Dabus G, Getch H, Batjer H, Bendok BR, Carroll TJ. 4D radial acquisition contrast-enhanced MR angiography and intracranial arteriovenous malformations: quickly approaching digital subtraction angiography. Stroke. 2009;40;2749–2753.

    Article  PubMed  Google Scholar 

  28. Willinek WA, Hadizadeh DR, von Falkenhausen M, et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging. 2008;27:1455–1460.

    Article  PubMed  Google Scholar 

  29. van Vaals JJ, Brummer ME, Dixon WT, et al. Keyhole method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3:671–675.

    Article  PubMed  Google Scholar 

  30. Chooi WK, Connolly DJ, Coley SC, Griffiths PD. Assessment of blood supply to intracranial pathologies in children using MR digital subtraction angiography. Pediatr Radiol. 2006;36:1057–1062.

    Article  PubMed  Google Scholar 

  31. Riederer SJ, HAider CR and Borisch E. Time-of-arrival mapping at three-dimensional time-resolved contrast-enhanced MR angiography. Radiology. 2009;253:532–542.

    Article  PubMed  Google Scholar 

  32. Klimo P, Jr, Rao G, Brockmeyer D. Pediatric arteriovenous malformations: a 15-year experience with an emphasis on residual and recurrent lesions. Childs Nerv Syst. 2007;23:31–37.

    Article  PubMed  Google Scholar 

  33. Gabriel EM, Sampson JH, Wilkins RH. Recurrence of a cerebral arteriovenous malformation after surgical excision. Case report. J Neurosurg. 1996;84:879–882.

    CAS  Google Scholar 

  34. Luessenhop AJ. Natural history of cerebral arteriovenous malformations. In: Wilson CB, Stein MB, eds. Intracranial Arteriovenous Malformations. Baltimore: Williams & Wilkins; 1984:12–23.

    Google Scholar 

  35. Humphreys RP. Brain vascular malformations. In: Choux M, Di Rocco C, Hockley A, Walker M, eds. Paediatric Neurosurgery. Edinburgh: Churchill Livingstone; 1999:665–677.

    Google Scholar 

  36. Papadias A, Taha A, Sgouros S, Walsh AR, Hockley AD. Incidence of vascular malformations in spontaneous intra-cerebral haemorrhage in children. Childs Nerv Syst. 2007;23:881–886.

    Article  PubMed  CAS  Google Scholar 

  37. Fasulakis S, Andronikou S. Comparison of MR angiography and conventional angiography in the investigation of intracranial arteriovenous malformations and aneurysms in children. Pediatr Radiol. 2003;33:378–378.

    Article  PubMed  Google Scholar 

  38. Buis DR, van Ouwerkerk WJ, Takahata H, Vandertop WP. Intracranial aneurysms in children under 1 year of age: a systematic review of the literature. Childs Nerv Syst. 2006;22:1395–1409.

    Article  PubMed  CAS  Google Scholar 

  39. Ventureyra EC, Higgins MJ. Traumatic intracranial aneurysms in childhood and adolescence. Case reports and review of literature. Childs Nerv Syst. 1994;10:361–369.

    Article  PubMed  CAS  Google Scholar 

  40. Nakstad P, Nornes H, Hauge HN. Traumatic aneurysms of the pericallosal arteries. Neuroradiology. 1986;28:335–338.

    Article  PubMed  CAS  Google Scholar 

  41. Allison JW, Davis PC, Sato Y, Jamees CA, HAque SS, Angtuaco EJ, Glasier CM. Intracranial aneurysms in infants and children. Pediatr Radiol. 1998;28:223–229.

    Article  PubMed  CAS  Google Scholar 

  42. Raybaud CA, Strother CM, Hald JK. Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation. Neuroradiology. 1989;31:19–28.

    Article  Google Scholar 

  43. Casasco A, Lylyk P, Hodes JE, Kohan G, Aymard A, Merland JJ. Percutaneous transvenous catheterization and embolization of vein of Galen aneurysms. Neurosurgery. 1991;28:260–266.

    Article  PubMed  CAS  Google Scholar 

  44. Gupta AK, Varma DR. Vein of Galen malformations: review. Neurol India. 2004;52:43–53.

    PubMed  CAS  Google Scholar 

  45. Berenstein A, Lasjaunias P. Arteriovenous fistulas of the brain. In: Surgical Neuroangiography: Endovascular Treatment of Cerebral Lesions. Berlin: Springer-Verlag; 1992:267–317.

    Google Scholar 

  46. Garcia-Monaco R, Lasjaunias P, Berenstein A. Therapeutic management of vein of Galen aneurysmal malformations. In: Vinuela F, Halbach VV, Dion JE, eds. Interventional Neuroradiology: Endovascular Therapy of the Central Nervous System. New York: Raven Press; 1992:113–127.

    Google Scholar 

  47. Alvarez H, Garcia Monaco R, Rodesch G, Sachet M, Krings T, Lasjaunias P. Vein of Galen aneurysmal malformations. Neuroimaging Clin N Am. 2007;17:189–206.

    Article  PubMed  CAS  Google Scholar 

  48. Lasjaunias P. Vascular Diseases in Neonates, Infants and Children: Interventional Neuroradiology Management. Berlin: Springer; 1997.

    Google Scholar 

  49. Lasjaunias P. Vascular Diseases in Neonates, Infants and Children: Interventional Neuroradiology Management. 2nd edition. Berlin: Springer; in press.

    Google Scholar 

  50. Yasargil MG. Microneurosurgery IIIB. New York: Thieme Medical Publishers; 1988:323–357.

    Google Scholar 

  51. Fournier D, Rodesch G, Ter Brugge K, et al. Acquired mural (dural) arteriovenous shunt of the vein of Galen: report of 4 cases. Neuroradiology. 1991;33:185–192.

    Article  Google Scholar 

  52. Lasjaunias P, Ter Brugge K, Lopez Ibor, et al. The role of dural anomalies in vein of Galen aneurysms: report of six cases and review of the literature. AJNR Am J Neuroradiol. 1987;8:185–192.

    PubMed  CAS  Google Scholar 

  53. Jagadeesan BD, Delgado Almandoz JE, Moran CJ, Benzinger TL. Accuracy of susceptibility-weighted imaging for the detection oa arteriovenous shunting in vascular malformations of the brain. Stroke. 2011;42:87–92.

    Article  PubMed  Google Scholar 

  54. Krings T. Geibprasert S, Luo CB, Bhattacharya JJ, Alvarez H, Lasjaunias P. Segmental neurovascular syndromes in children. Neuroimaging Clin N Am. 2007;17;245–258.

    Article  PubMed  CAS  Google Scholar 

  55. Bergstrand H, Olivecrona H, Tonnis W. Gefa ss- missbildungen und Gefaessgeschwulste des Ge- hirns. Leipzig (Germany): Thieme; 1936.

    Google Scholar 

  56. Bonnet P, Dechaume JP, Blanc E (1937) Lanevrisme cir-soide de la retine. Ses relations avec lanevrysme cirsoide du cerveau [in French]. Journal de Me ́decine de Lyon. 18:165–178.

    Google Scholar 

  57. Wyburn-Mason R. Arteriovenous aneurysm of midbrain and retina, facial naevi and mental changes. Brain. 1943;66:163–203.

    Article  Google Scholar 

  58. Bhattacharya JJ, Luo CB, Alvarez H, et al. PHACES syndrome: a review of eight previously unreported cases with late arterial occlusions. Neuroradiology. 2004;46:227–33.

    Article  PubMed  CAS  Google Scholar 

  59. Lasjaunias P, Ter Brugge K, Berenstein A. Surgical Neuroangiography. Berlin: Springer; 2006.

    Google Scholar 

  60. Griffiths PD. Sturge-Weber syndrome revisited: the role of neuroradiology. Neuropediatrics. 1996;27:284–294.

    Article  PubMed  CAS  Google Scholar 

  61. Truhan AP, Filipek PA. Magnetic resonance imag- ing. Its role in the neuroradiologic evaluation of neurofibromatosis, tuberous sclerosis, and Sturge-Weber syndrome. Arch Dermatol. 1993;129:219–226.

    Article  PubMed  CAS  Google Scholar 

  62. Hu J, Yu Y, Juhasz C, et al. MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome. J Magn Reson Imaging. 2008;28:300–307.

    Article  PubMed  Google Scholar 

  63. Ziyeh S, chumacher M, Streker R, Rossler J, Hochmuth A, Klisch J. Head and neck vascular malformations: time-resolved MR projection angiography. Neuroradiology. 2003;45:681–686.

    Article  PubMed  CAS  Google Scholar 

  64. Rollins N, Ison C, Reyes T, Chia J. Cerebral MR venography in children: comparison of 2D time-o-flight and gadolinium enhanced 3D gradient-echo techniques. Radiology. 2005;235:1011–1017.

    Article  PubMed  Google Scholar 

  65. Widjaja E, Shroff M, Blaser S, Laughlin S, Raybaud C. 2D time-of-flight MR venography in neonates: anatomy and pitfalls. AJNR Am J Neuroradiol. 2006;27:1913–1918.

    PubMed  CAS  Google Scholar 

  66. Meckel S, Reisinger C, Bremerich J, et al. Cerebral venous thrombosis: diagnostic accuracy of combined, dynamic and static, contrast-enhanced 4D MR venography. AJNR Am J Neuroradiol. 2010;31:527–535.

    Article  PubMed  CAS  Google Scholar 

  67. Schoenberg BS, Mellinger JF, Schoenberg DG. Cerebrovascular disease in infants and children: a study of incidence, clinical features, and survival. Neurology. 1978;28:763–768.

    PubMed  CAS  Google Scholar 

  68. Broderick J, Talbot GT, Prenger E, et al. Stroke in children within a major metropolitan area: the surprising importance of intracerebral hemorrhage. J Child Neurol. 1993;8:250–255.

    Article  PubMed  CAS  Google Scholar 

  69. Giroud M, Lemesle M, Gouyon JB, et al. Cerebrovascular disease in children under 16 years of age in the city of Dijon, Franc: a study of incidence and clinical features from 1983 to 1993. J Clin Epidemiol. 1995;48:1343–1348.

    Article  PubMed  CAS  Google Scholar 

  70. deVeber G. Stroke and the child’s brain: an overview of epidemiology, syndromes and risk factors. Curr Opin Neurol. 2002;15:133–138.

    Google Scholar 

  71. Fullerton HJ, Wu YW, Sidney S et al. (2007) Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics. 119(3);495–501.

    Article  PubMed  Google Scholar 

  72. Kirkham F, Sebire G, Steinlin M, et al. Arterial ischemic stroke in children. Thromb Haemost. 2004;92:697–706.

    PubMed  CAS  Google Scholar 

  73. Braun KP, Bulder MM, Chabrier S, Kirkham FJ, Uiterwaal CS, Tardieu M, Sébire G. The course and outcome of unilateral ­intracranial arteriopathy in 79 children with ischaemic stroke. Brain. 2009;132(Pt 2):544–557.

    PubMed  CAS  Google Scholar 

  74. Scott RM, Smith ER. Moyamoya disease and Moyamoya syndrome. N Engl J Med. 2009; 360:1226–1237.

    Article  PubMed  CAS  Google Scholar 

  75. Singla M, John E, Hidalgo G, et al. Moyamoya vasculopathy in a child after hemolytic uremic syndrome: a possible etiopathogenesis. Neuropediatrics. 2008;39:128–130.

    Article  PubMed  CAS  Google Scholar 

  76. Rea D, Brandsema J, Armstrong D, et al. Cerebral arteriopathy in children with neurofibromatosis type 1. Pediatrics. 2009;124:e476-e483.

    Article  PubMed  Google Scholar 

  77. Morioka M, Hamada JI, Kawano T, Todaka T, Yano S, Kai Y, Ushio Y. Angiographic dilatation and branch extension of the anterior choroidal and posterior communicating arteries are predictors of hemorrhage in adult Moyamoya patients. Stroke. 2003;34;90–95.

    Article  PubMed  Google Scholar 

  78. Fushimi Y, Miki Y, Kikuta K, et al. Comparison of 3.0- and 1.5-T Three-dimensional time-of-flight MR angiography in Moyamoya disease: preliminary experience. Radiology. 2006;239:232–239.

    Article  PubMed  Google Scholar 

  79. Yoon HK, Shin HJ, Lee M, Byun HS, Na DG, Han BK. MR angiography of Moyamoya disease before and after Encephaloduroarterio­synangiosis. AJR Am J Roentgenol. 2000;174:195–2000.

    PubMed  CAS  Google Scholar 

  80. Neff W, Horn P, Schmiedek P, Duber C, Dinter DJ. 2D Cine phase-contrast MRI for volume flow evaluation of the brain-supplying circulation in Moyamoya disease. AJR Am J Roentgenol. 2006;187:W107-W116.

    Article  PubMed  Google Scholar 

  81. Aviv RI, Benseler SM, DeVeber G, Silverman ED, Tyrrell PN, Tsang LM, Armstrong D. Angiography of primary central nervous system angiitis of childhood: conventional angiography versus magnetic resonance angiography at presentation. Am J Neuroradiol. 2007;28:9–15.

    Article  PubMed  CAS  Google Scholar 

  82. Eleftheriou D, Cox T, Saunders D, Klein NJ, Brogan PA, Ganesan V. Investigation of childhood central nervous system vasculitis: magnetic resonance angiography versus catheter cerebral angiography. Dev Med Child Neurol. 2010;52:863–867.

    Article  PubMed  Google Scholar 

  83. Mascalchi M, Quilici N, Ferrito G, et al. Identification of the feeding arteries of spinal vascular lesions via phase-contrast MR angiography with three-dimensional acquisition and phase display. AJNR Am J Neuroradiol. 1997;18:351–358.

    PubMed  CAS  Google Scholar 

  84. Saraf-Lavi E, Bowen BC, Quencer RM, et al. Detection of spinal dural arterio-venous fistulae with MR imaging and contrast-enhanced MR angiography: sensitivity, specificity, and prediction of vertebral level. AJNR Am J Neuroradiol. 2002;23:858–867.

    PubMed  Google Scholar 

  85. Backes WH, Nijenhuis RJ. Advances in spinal cord MR angiography. Am J Neuroradiol. 2008;29:619–631.

    Article  PubMed  CAS  Google Scholar 

  86. Mull M, Nijenhuis RJ, Backes WH, Krings T, Wilmink JT, Thron A. Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am J Neuroradiol. 2007;28:1249–1258.

    Article  PubMed  CAS  Google Scholar 

  87. Jaspers K, Nijenhuis RJ, Backes WH. Differentiation of spinal cord arteries and veins by time-resolved MR angiography. J Magn Reson Imaging. 2007;26:31–40.

    Article  PubMed  Google Scholar 

  88. Hyodoh H, Shirase R, Akiba H, et al. Double-subtraction maximum intensity projection MR angiography for detecting the artery of Adamkiewicz and differentiating it from the drainage vein. J Magn Reson Imaging. 2007;26:359–365.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharathi D. Jagadeesan MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jagadeesan, B.D., Loy, D.N. (2012). Pediatric MR Angiography: Principles and Applications. In: Carr, J., Carroll, T. (eds) Magnetic Resonance Angiography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1686-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1686-0_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1685-3

  • Online ISBN: 978-1-4419-1686-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics