Skip to main content

Axon Degeneration: Mechanisms and Consequences

  • Chapter
  • First Online:
New Aspects of Axonal Structure and Function
  • 507 Accesses

Abstract

Historically the focus of research into neurodegenerative diseases has been the cell body, but more recently this is shifting to acknowledge the strong contribution of axon and synapse degeneration to neurodegenerative diseases. Axonal loss is evident in traumatic injury of the spinal cord as well as neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and toxic neuropathy. For example, end stage multiple sclerosis plaques show up to 60% loss of axons and the extent of axonal damage is most pronounced in active demyelinating plaques, although demyelination is not a prerequisite for axonal injury. This suggests that axonal loss is an early event in disease pathology and contributes to the functional deficits experienced by the patient. While therapeutic interventions which protect the cell body in models of spinal cord injury, ALS and MS do show some efficacy ameliorating clinical symptoms, directing protection to the axon may prove to be of considerable value. However, this requires a greater understanding of axonal biology, the extent to which the axon can function as an independent cellular compartment under normal physiological conditions, and also the pathways that are involved in the initiation of degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agthong S, Kaewsema A, Tanomsridejchai N, Chentanez V (2006) Activation of MAPK ERK in peripheral nerve after injury. BMC Neurosci 7:45

    PubMed  CAS  Google Scholar 

  • Aldskogius H, Kozlova EN (1998) Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol 55(1):1–26

    PubMed  CAS  Google Scholar 

  • Anderson DR, Davis JL, Carraway KL (1977) Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem 252(19):6617–6623

    PubMed  CAS  Google Scholar 

  • Andrews HE, Nichols PP, Bates D, Turnbull DM (2005) Mitochondrial dysfunction plays a key role in progressive axonal loss in Multiple Sclerosis. Med Hypotheses 64(4):669–677

    PubMed  CAS  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15(4):961–973

    PubMed  CAS  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305(5686):1010–1013

    PubMed  CAS  Google Scholar 

  • Avellino AM, Hart D, Dailey AT, MacKinnon M, Ellegala D, Kliot M (1995) Differential macrophage responses in the peripheral and central nervous system during Wallerian degeneration of axons. Exp Neurol 136(2):183–198

    PubMed  CAS  Google Scholar 

  • Bagnard D, Sainturet N, Meyronet D, Perraut M, Miehe M, Roussel G, Aunis D, Belin MF, Thomasset N (2004) Differential MAP kinases activation during semaphorin3A-induced repulsion or apoptosis of neural progenitor cells. Mol Cell Neurosci 25(4):722–731

    PubMed  CAS  Google Scholar 

  • Bassell GJ, Zhang H, Byrd AL, Femino AM, Singer RH, Taneja KL, Lifshitz LM, Herman IM, Kosik KS (1998) Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J Neurosci 18(1):251–265

    PubMed  CAS  Google Scholar 

  • Beirowski B, Berek L, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Coleman MP (2004) Quantitative and qualitative analysis of Wallerian degeneration using restricted axonal labelling in YFP-H mice. J Neurosci Methods 134(1):23–35

    PubMed  Google Scholar 

  • Bell MD, Lopez-Gonzalez R, Lawson L, Hughes D, Fraser I, Gordon S, Perry VH (1994) Upregulation of the macrophage scavenger receptor in response to different forms of injury in the CNS. J Neurocytol 23(10):605–613

    PubMed  CAS  Google Scholar 

  • Berg CP, Engels IH, Rothbart A, Lauber K, Renz A, Schlosser SF, Schulze-Osthoff K, Wesselborg S (2001) Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ 8(12):1197–1206

    PubMed  CAS  Google Scholar 

  • Bignami A, Ralston HJ 3rd (1969) The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain Res 13(3):444–461

    PubMed  CAS  Google Scholar 

  • Bishop DL, Misgeld T, Walsh MK, Gan WB, Lichtman JW (2004) Axon branch removal at developing synapses by axosome shedding. Neuron 44(4):651–661

    PubMed  CAS  Google Scholar 

  • Boas FE, Forman L, Beutler E (1998) Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci USA 95(6):3077–3081

    PubMed  CAS  Google Scholar 

  • Bratosin D, Leszczynski S, Sartiaux C, Fontaine O, Descamps J, Huart JJ, Poplineau J, Goudaliez F, Aminoff D, Montreuil J (2001) Improved storage of erythrocytes by prior leukodepletion: flow cytometric evaluation of stored erythrocytes. Cytometry 46(6):351–356

    PubMed  CAS  Google Scholar 

  • Bratton DL (1993) Release of platelet activation factor from activated neutrophils. Transglutaminase-dependent enhancement of transbilayer movement across the plasma membrane. J Biol Chem 268(5):3364–3373

    PubMed  CAS  Google Scholar 

  • Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110(2):223–235

    PubMed  CAS  Google Scholar 

  • Bruck W (1997) The role of macrophages in Wallerian degeneration. Brain Pathol 7(2):741–752

    PubMed  CAS  Google Scholar 

  • Brugnara C, De Franceschi L, Alper SL (1993). Ca(2+)-activated K+ transport in erythrocytes. Comparison of binding and transport inhibition by scorpion toxins. J Biol Chem 268(12):8760–8768

    PubMed  CAS  Google Scholar 

  • Buckmaster EA, Perry VH, Brown MC (1995) The rate of Wallerian degeneration in cultured neurons from wild type and C57BL/WldS mice depends on time in culture and may be extended in the presence of elevated K+ levels. Eur J Neurosci 7(7):1596–1602

    PubMed  CAS  Google Scholar 

  • Bunge MB (1973) Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol 56(3):713–735

    PubMed  CAS  Google Scholar 

  • Buss A, Schwab ME (2003) Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord. Glia 42(4):424–432

    PubMed  Google Scholar 

  • Campbell DS, Holt CE (2001). Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32(6):1013–1026

    PubMed  CAS  Google Scholar 

  • Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37(6):939–952

    PubMed  CAS  Google Scholar 

  • Campenot RB, Eng H (2000) Protein synthesis in axons and its possible functions. J Neurocytol 29(11–12):793–798

    PubMed  CAS  Google Scholar 

  • Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17(5):1642–1659

    PubMed  CAS  Google Scholar 

  • Cohen CM, Gascard P (1992) Regulation and post-translational modification of erythrocyte membrane and membrane-skeletal proteins. Semin Hematol 29(4):244–292

    PubMed  CAS  Google Scholar 

  • Coleman MP, Conforti L, Buckmaster EA, Tarlton A, Ewing RM, Brown MC, Lyon MF, Perry VH (1998). An 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse. Proc Natl Acad Sci USA 95(17):9985–9990

    PubMed  CAS  Google Scholar 

  • Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, Adalbert R, Silva A, Bridge K, Huang XP, Magni G, Glass JD, Coleman MP (2007) “NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration”. Cell Death Differ 14(1):116–127.

    PubMed  CAS  Google Scholar 

  • Conforti L, Tarlton A, Mack TG, Mi W, Buckmaster EA, Wagner D, Perry VH, Coleman MP (2000) A Ufd2/D4Cole1e chimeric protein and overexpression of Rbp7 in the slow Wallerian degeneration (WldS) mouse. Proc Natl Acad Sci USA 97(21):11377–11382

    PubMed  CAS  Google Scholar 

  • Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15(17):1535–1547

    PubMed  CAS  Google Scholar 

  • Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci USA 101(21):8168–8173

    PubMed  CAS  Google Scholar 

  • Cuzner ML, Norton WT (1996) Biochemistry of demyelination. Brain Pathol 6(3):231–242

    PubMed  CAS  Google Scholar 

  • Dai RM, Li CC (2001) Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3(8):740–744

    PubMed  CAS  Google Scholar 

  • Deshmukh M, Kuida K, Johnson EM Jr (2000) Caspase inhibition extends the commitment to neuronal death beyond cytochrome c release to the point of mitochondrial depolarization. J Cell Biol 150(1):131–143

    PubMed  CAS  Google Scholar 

  • Droz B, Leblond CP (1963) Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. J Comp Neurol 121:325–346

    PubMed  CAS  Google Scholar 

  • Duranton C, Huber SM, Lang F (2002) Oxidation induces a Cl(–)-dependent cation conductance in human red blood cells. J Physiol 539(Pt 3):847–855

    PubMed  CAS  Google Scholar 

  • Eda S, Sherman IW (2002) Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 12(5–6):373–384

    PubMed  CAS  Google Scholar 

  • Eng H, Lund K, Campenot RB (1999) Synthesis of beta-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J Neurosci 19(1):1–9

    PubMed  CAS  Google Scholar 

  • Etzion Z, Tiffert T, Bookchin RM, Lew VL (1993) Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells. J Clin Invest 92(5):2489–2498

    PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405(6782):85–90

    PubMed  CAS  Google Scholar 

  • Fang C, Bernardes-Silva M, Coleman MP, Perry VH (2005) The cellular distribution of the Wld s chimeric protein and its constituent proteins in the CNS. Neuroscience 135(4):1107–1118

    PubMed  CAS  Google Scholar 

  • Ferreirinha F, Quattrini A, Pirozzi M, Valsecchi V, Dina G, Broccoli V, Auricchio A, Piemonte F, Tozzi G, Gaeta L, Casari G, Ballabio A, Rugarli EI (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113(2):231–242

    PubMed  CAS  Google Scholar 

  • Ferri A, Sanes JR, Coleman MP, Cunningham JM, Kato AC (2003) Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease. Curr Biol 13(8):669–673

    PubMed  CAS  Google Scholar 

  • Finn JT, Weil M, Archer F, Siman R, Srinivasan A, Raff MC (2000) Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J Neurosci 20(4):1333–1341

    PubMed  CAS  Google Scholar 

  • Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15(17):1548–1553

    PubMed  CAS  Google Scholar 

  • Forgue ST, Dahl JL (1978) The turnover rate of tubulin in rat brain. J Neurochem 31(5):1289–1297

    PubMed  CAS  Google Scholar 

  • Franco RS, Palascak M, Thompson H, Rucknagel DL, Joiner CH (1996) Dehydration of transferrin receptor-positive sickle reticulocytes during continuous or cyclic deoxygenation: role of KCl cotransport and extracellular calcium. Blood 88(11):4359–4365

    PubMed  CAS  Google Scholar 

  • Franson P, Ronnevi LO (1984) Myelin breakdown and elimination in the posterior funiculus of the adult cat after dorsal rhizotomy: a light and electron microscopic qualitative and quantitative study. J Comp Neurol 223(1):138–151

    PubMed  CAS  Google Scholar 

  • Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ (2003) Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38(4):567–580

    PubMed  CAS  Google Scholar 

  • Friede RL, Bischhausen R (1980) The fine structure of stumps of transected nerve fibers in subserial sections. J Neurol Sci 44(2–3):181–203

    PubMed  CAS  Google Scholar 

  • Friede RL, Bruck W (1993) Macrophage functional properties during myelin degradation. Adv Neurol 59:327–336

    PubMed  CAS  Google Scholar 

  • Garay R, Braquet P (1986) Involvement of K+ movements in the membrane signal induced by PAF-acether. Biochem Pharmacol 35(16):2811–2815

    PubMed  CAS  Google Scholar 

  • Garcia ML, Cleveland DW (2001) Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 13(1):41–48

    PubMed  CAS  Google Scholar 

  • George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15(10):6445–6452

    PubMed  CAS  Google Scholar 

  • George R, Griffin JW (1994) The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol 23(11):657–667

    PubMed  CAS  Google Scholar 

  • Goodrum KJ, McCormick LL, Schneider B (1994) Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/CD18) dependent. Infect Immun 62(8):3102–3107

    PubMed  CAS  Google Scholar 

  • Griffin JW, George R, Ho T (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52(6):553–560

    PubMed  CAS  Google Scholar 

  • Griffin JW, George R, Lobato C, Tyor WR, Yan LC, Glass JD (1992) Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune-mediated demyelination. J Neuroimmunol 40(2–3):153–165

    PubMed  CAS  Google Scholar 

  • Griffin JW, Price DL, Engel WK, Drachman DB (1977) The pathogenesis of reactive axonal swellings: role of axonal transport. J Neuropathol Exp Neurol 36(2):214–227

    PubMed  CAS  Google Scholar 

  • Hamon Y, Trompier D, Ma Z, Venegas V, Pophillat M, Mignotte V, Zhou Z, Chimini G (2006) Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS ONE 1:e120

    Google Scholar 

  • Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van-Minnen J, Twiss JL, Fainzilber M (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40(6):1095–1104

    PubMed  CAS  Google Scholar 

  • Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276(35):33111–33120

    PubMed  CAS  Google Scholar 

  • Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O’Leary DD, Luo L (2006) Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50(6):883–895

    PubMed  CAS  Google Scholar 

  • Huber SM, Gamper N, Lang F (2001) Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflugers Arch 441(4):551–558

    PubMed  CAS  Google Scholar 

  • Kaestner L, Christophersen P, Bernhardt I, Bennekou P (2000) The non-selective voltage-activated cation channel in the human red blood cell membrane: reconciliation between two conflicting reports and further characterisation. Bioelectrochemistry 52(2):117–125

    PubMed  CAS  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ, Fetter RD, Tessier-Lavigne M, Goodman CS, Tear G (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92(2):205–215

    PubMed  CAS  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608

    PubMed  CAS  Google Scholar 

  • Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96(5):635–644

    PubMed  CAS  Google Scholar 

  • Koenig E (1979) Ribosomal RNA in Mauthner axon: implications for a protein synthesizing machinery in the myelinated axon. Brain Res 174(1):95–107

    PubMed  CAS  Google Scholar 

  • Koenig E, Martin R, Titmus M, Sotelo-Silveira JR (2000) Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J Neurosci 20(22):8390–8400

    PubMed  CAS  Google Scholar 

  • Kuhlmann T, Wendling U, Nolte C, Zipp F, Maruschak B, Stadelmann C, Siebert H, Bruck W (2002) Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. J Neurosci Res 67(2):185–190

    PubMed  CAS  Google Scholar 

  • Lang PA, Kempe DS, Tanneur V, Eisele K, Klarl BA, Myssina S, Jendrossek V, Ishii S, Shimizu T, Waidmann M, Hessler G, Huber SM, Lang F, Wieder T (2005) Stimulation of erythrocyte ceramide formation by platelet-activating factor. J Cell Sci 118(Pt 6):1233–1243

    PubMed  CAS  Google Scholar 

  • Laser H, Conforti L, Morreale G, Mack TG, Heyer M, Haley JE, Wishart TM, Beirowski B, Walker SA, Haase G, Celik A, Adalbert R, Wagner D, Grumme D, Ribchester RR, Plomann M, Coleman MP (2006) The slow Wallerian degeneration protein, WldS, binds directly to VCP/p97 and partially redistributes it within the nucleus. Mol Biol Cell 17(3):1075–1084

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Frost L, Risbridger J, Fearn S, Perry VH (1994) Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve. J Neurocytol 23(12):729–744

    PubMed  CAS  Google Scholar 

  • Lee SK, Hollenbeck PJ (2003) Organization and translation of mRNA in sympathetic axons. J Cell Sci 116(Pt 21):4467–4478

    PubMed  CAS  Google Scholar 

  • Lindwall C, Kanje M (2005) Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p-c-Jun and ATF3 in adult rat sensory neurons. Mol Cell Neurosci 29(2):269–282

    PubMed  CAS  Google Scholar 

  • Litman P, Barg J, Rindzoonski L, Ginzburg I (1993) Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron 10(4):627–638

    PubMed  CAS  Google Scholar 

  • Liu HM, Yang LH, Yang YJ (1995) Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J Neuropathol Exp Neurol 54(4):487–496

    PubMed  CAS  Google Scholar 

  • LoPachin RM, Jr, LoPachin VR, Saubermann AJ (1990) Effects of axotomy on distribution and concentration of elements in rat sciatic nerve. J Neurochem 54(1):320–332

    PubMed  CAS  Google Scholar 

  • Lowe J, Mayer RJ, Landon M (1993) Ubiquitin in neurodegenerative diseases. Brain Pathol 3(1):55–65

    PubMed  CAS  Google Scholar 

  • Ludwin SK (1990) Oligodendrocyte survival in Wallerian degeneration. Acta Neuropathol (Berl) 80(2):184–191

    CAS  Google Scholar 

  • Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S (1989) Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci 1(1):27–33

    PubMed  CAS  Google Scholar 

  • Lyon MF, Ogunkolade BW, Brown MC, Atherton DJ, Perry VH (1993) A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4. Proc Natl Acad Sci USA 90(20):9717–9720

    PubMed  CAS  Google Scholar 

  • MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR (2006) The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50(6):869–881

    PubMed  CAS  Google Scholar 

  • Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, Court F, Conforti L, Fernando FS, Tarlton A, Andressen C, Addicks K, Magni G, Ribchester RR, Perry VH, Coleman MP (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4(12):1199–1206

    PubMed  CAS  Google Scholar 

  • Martini R, Schachner M (1988) Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J Cell Biol 106(5):1735–1746

    PubMed  CAS  Google Scholar 

  • Meller D, Eysel UT, Schmidt-Kastner R (1994) Transient immunohistochemical labelling of rat retinal axons during Wallerian degeneration by a monoclonal antibody to neurofilaments. Brain Res 648(1):162–166

    PubMed  CAS  Google Scholar 

  • Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119(1):45–54

    PubMed  CAS  Google Scholar 

  • Minetti G, Piccinini G, Balduini C, Seppi C, Brovelli A (1996) Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes. Biochem J 320(Pt 2):445–450

    PubMed  CAS  Google Scholar 

  • Mosley K, Cuzner ML (1996) Receptor-mediated phagocytosis of myelin by macrophages and microglia: effect of opsonization and receptor blocking agents. Neurochem Res 21(4):481–487

    PubMed  CAS  Google Scholar 

  • Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388

    PubMed  CAS  Google Scholar 

  • Mueller M, Wacker K, Ringelstein EB, Hickey WF, Imai Y, Kiefer R (2001) Rapid response of identified resident endoneurial macrophages to nerve injury. Am J Pathol 159(6):2187–2197

    PubMed  CAS  Google Scholar 

  • Mukoyama M, Yamazaki K, Kikuchi T, Tomita T (1989) Neuropathology of gracile axonal dystrophy (GAD) mouse. An animal model of central distal axonopathy in primary sensory neurons. Acta Neuropathol (Berl) 79(3):294–299

    CAS  Google Scholar 

  • Nagase T, Nakayama M, Nakajima D, Kikuno R, Ohara O (2001) Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 8(2):85–95

    PubMed  CAS  Google Scholar 

  • Nixon RA (1980) Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins. Brain Res 200(1):69–83

    PubMed  CAS  Google Scholar 

  • Nunomura W, Takakuwa Y, Tokimitsu R, Krauss SW, Kawashima M, Mohandas N (1997) Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J Biol Chem 272(48):30322–30328

    PubMed  CAS  Google Scholar 

  • Pan YA, Misgeld T, Lichtman JW, Sanes JR (2003) Effects of neurotoxic and neuroprotective agents on peripheral nerve regeneration assayed by time-lapse imaging in vivo. J Neurosci 23(36):11479–11488

    PubMed  CAS  Google Scholar 

  • Pannese E, Ledda M (1991) Ribosomes in myelinated axons of the rabbit spinal ganglion neurons. J Submicrosc Cytol Pathol 23(1):33–38

    PubMed  CAS  Google Scholar 

  • Parson SH, Mackintosh CL, Ribchester RR (1997) Elimination of motor nerve terminals in neonatal mice expressing a gene for slow Wallerian degeneration (C57Bl/Wlds. Eur J Neurosci 9(8):1586–1592

    PubMed  CAS  Google Scholar 

  • Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45(5):715–726

    PubMed  CAS  Google Scholar 

  • Perlson E, Hanz S, Medzihradszky KF, Burlingame AL, Fainzilber M (2004) From snails to sciatic nerve: retrograde injury signaling from axon to soma in lesioned neurons. J Neurobiol 58(2):287–294

    PubMed  Google Scholar 

  • Perry VH, Brown MC (1992) Macrophages and nerve regeneration. Curr Opin Neurobiol 2(5):679–682

    PubMed  CAS  Google Scholar 

  • Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165(4):1218–1223

    PubMed  CAS  Google Scholar 

  • Perry VH, Tsao JW, Fearn S, Brown MC (1995) Radiation-induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice. Eur J Neurosci 7(2):271–280

    PubMed  CAS  Google Scholar 

  • Posse de Chaves E, Vance DE, Campenot RB, Vance JE (1995) Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons. J Cell Biol 128(5):913–918

    Google Scholar 

  • Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296(5569):868–871

    PubMed  CAS  Google Scholar 

  • Raivich G, Hellweg R, Kreutzberg GW (1991) NGF receptor-mediated reduction in axonal NGF uptake and retrograde transport following sciatic nerve injury and during regeneration. Neuron 7(1):151–164

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S. (1928) Degeneration and regeneration of the nervous system. Volume 2. Haffner Publishing Co. New York, New York, USA

    Google Scholar 

  • Ray SK, Matzelle DD, Sribnick EA, Guyton MK, Wingrave JM, Banik NL (2003) Calpain inhibitor prevented apoptosis and maintained transcription of proteolipid protein and myelin basic protein genes in rat spinal cord injury. J Chem Neuroanat 26(2):119–124

    PubMed  CAS  Google Scholar 

  • Reichert F, Rotshenker S (1996) Deficient activation of microglia during optic nerve degeneration. J Neuroimmunol 70(2):153–161

    PubMed  CAS  Google Scholar 

  • Rivera A, Jarolim P, Brugnara C (2002) Modulation of Gardos channel activity by cytokines in sickle erythrocytes. Blood 99(1):357–603

    PubMed  CAS  Google Scholar 

  • Saido TC, Nagao S, Shiramine M, Tsukaguchi M, Yoshizawa T, Sorimachi H, Ito H, Tsuchiya T, Kawashima S, Suzuki K (1994) Distinct kinetics of subunit autolysis in mammalian m-calpain activation. FEBS Lett 346(2–3):263–267

    PubMed  CAS  Google Scholar 

  • Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada T, Ichihara N, Wakana S, Kikuchi T, Wada K (1999) Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat Genet 23(1):47–51

    PubMed  CAS  Google Scholar 

  • Sajadi A, Schneider BL, Aebischer P (2004) Wlds-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14(4):326–330

    PubMed  CAS  Google Scholar 

  • Samsam M, Mi W, Wessig C, Zielasek J, Toyka KV, Coleman MP, Martini R (2003) The Wlds mutation delays robust loss of motor and sensory axons in a genetic model for myelin-related axonopathy. J Neurosci 23(7):2833–2839

    PubMed  CAS  Google Scholar 

  • Schaecher KE, Shields DC, Banik NL (2001) Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 26(6):731–737

    PubMed  CAS  Google Scholar 

  • Schmied R, Ambron RT (1997) A nuclear localization signal targets proteins to the retrograde transport system, thereby evading uptake into organelles in aplysia axons. J Neurobiol 33(2):151–160

    PubMed  CAS  Google Scholar 

  • Seigneuret M, Devaux PF (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci USA 81(12):3751–3755

    PubMed  CAS  Google Scholar 

  • Sheu JY, Kulhanek DJ, Eckenstein FP (2000) Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Exp Neurol 166(2):392–402

    PubMed  CAS  Google Scholar 

  • Shields DC, Banik NL (1999) Pathophysiological role of calpain in experimental demyelination. J Neurosci Res 55(5):533–541

    PubMed  CAS  Google Scholar 

  • Shields DC, Tyor WR, Deibler GE, Banik NL (1998) Increased calpain expression in experimental demyelinating optic neuritis: an immunocytochemical study. Brain Res 784(1–2):299–304

    PubMed  CAS  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305

    PubMed  CAS  Google Scholar 

  • Sievers C, Platt N, Perry VH, Coleman MP, Conforti L (2003) Neurites undergoing Wallerian degeneration show an apoptotic-like process with Annexin V positive staining and loss of mitochondrial membrane potential. Neurosci Res 46(2):161–169

    PubMed  CAS  Google Scholar 

  • Smith SK, Farnbach AR, Harris FM, Hawes AC, Jackson LR, Judd AM, Vest RS, Sanchez S, Bell JD (2001) Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. J Biol Chem 276(25):22732–22741

    PubMed  CAS  Google Scholar 

  • Steward O, Ribak CE (1986) Polyribosomes associated with synaptic specializations on axon initial segments: localization of protein-synthetic machinery at inhibitory synapses. J Neurosci 6(10):3079–3085

    PubMed  CAS  Google Scholar 

  • Stoll G, Griffin JW, Li CY, Trapp BD (1989) Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 18(5):671–683

    PubMed  CAS  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58(3):233–247

    PubMed  CAS  Google Scholar 

  • Tanaka T, Kadowaki K, Lazarides E, Sobue K (1991) Ca2(+)-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. J Biol Chem 266(2):1134–1140

    PubMed  CAS  Google Scholar 

  • Tennyson VM (1970) The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J Cell Biol 44(1):62–79

    PubMed  CAS  Google Scholar 

  • Twiss JL, Smith DS, Chang B, Shooter EM (2000) Translational control of ribosomal protein L4 mRNA is required for rapid neurite regeneration. Neurobiol Dis 7(4):416–428

    PubMed  CAS  Google Scholar 

  • Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25(2):331–342

    PubMed  CAS  Google Scholar 

  • Waller A (1850) Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond Biol 140:423

    Google Scholar 

  • Wang AL, Yuan M, Neufeld AH (2006) Degeneration of neuronal cell bodies following axonal injury in Wld(S) mice. J Neurosci Res 84(8):1799–1807

    PubMed  CAS  Google Scholar 

  • Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170(3):349–355

    PubMed  CAS  Google Scholar 

  • Wang MS, Davis AA, Culver DG, Glass JD (2002) WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann Neurol 52(4):442–447

    PubMed  Google Scholar 

  • Watts RJ, Hoopfer ED, Luo L (2003) Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38(6):871–885

    PubMed  CAS  Google Scholar 

  • Wellmann H, Kaltschmidt B, Kaltschmidt C (2001) Retrograde transport of transcription factor NF-kappa B in living neurons. J Biol Chem 276(15):11821–11829

    PubMed  CAS  Google Scholar 

  • Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T, Merianda TT, Sylvester J, van Minnen J, Twiss JL (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25(4):778–791

    PubMed  CAS  Google Scholar 

  • Xie XY, Barrett JN (1991) Membrane resealing in cultured rat septal neurons after neurite transection: evidence for enhancement by Ca(2+)-triggered protease activity and cytoskeletal disassembly. J Neurosci 11(10):3257–3367

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Fujitani M, Hata K, Kitajo K, Mimura F, Abe H, Yamashita T (2005) Wallerian degeneration involves Rho/Rho-kinase signaling. J Biol Chem 280(21):20384–20388

    PubMed  CAS  Google Scholar 

  • Yamashima T (2000) Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62(3):273–295

    PubMed  CAS  Google Scholar 

  • Yi XN, Zheng LF, Zhang JW, Zhang LZ, Xu YZ, Luo G, Luo XG (2006) Dynamic changes in Robo2 and Slit1 expression in adult rat dorsal root ganglion and sciatic nerve after peripheral and central axonal injury. Neurosci Res 56(3):314–321

    PubMed  CAS  Google Scholar 

  • Zelena J (1970) Ribosome-like particles in myelinated axons of the rat. Brain Res 24(2):359–363

    PubMed  CAS  Google Scholar 

  • Zelena J, Lubinska L, Gutmann E (1968) Accumulation of organelles at the ends of interrupted axons. Z Zellforsch Mikrosk Anat 91(2):200–219

    PubMed  CAS  Google Scholar 

  • Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z (2003) Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39(2):217–225

    PubMed  CAS  Google Scholar 

  • Zhang XP, Ambron RT (2000) Positive injury signals induce growth and prolong survival in Aplysia neurons. J Neurobiol 45(2):84–94

    PubMed  CAS  Google Scholar 

  • Zheng JQ, Kelly TK, Chang B, Ryazantsev S, Rajasekaran AK, Martin KC, Twiss JL (2001) A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 21(23):9291–9303

    PubMed  CAS  Google Scholar 

  • Zhou J, Liao J, Xing C (1997) Determination of changes in membrane phospholipids of rat lung and liver tissues from acute heat stress by high performance liquid chromatography. Se Pu 15(1):77–78

    PubMed  CAS  Google Scholar 

  • Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99(11):4030–4038

    PubMed  CAS  Google Scholar 

  • Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ (1999) Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience 92(3):841–853

    PubMed  CAS  Google Scholar 

  • Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104(1):43–56

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy J. Broom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Broom, L.J., Perry, V.H. (2010). Axon Degeneration: Mechanisms and Consequences. In: Feldmeyer, D., Lübke, J. (eds) New Aspects of Axonal Structure and Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1676-1_10

Download citation

Publish with us

Policies and ethics