Skip to main content

Nitrogen and Molybdenum Control of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

Abstract

The vast majority of the purple nonsulfur photosynthetic bacteria are diazotrophs, but the details of the complex regulation of the nitrogen fixation process are well understood only for a few species. Here we review what is known of the well-studied Rhodobacter capsulatus, which contains two different nitrogenases, a standard Mo-nitrogenase and an alternative Fe-nitrogenase, and which has overlapping transcriptional control mechanisms with regard to the presence of fixed nitrogen, oxygen, and molybdenum as well as the capability for the post-translational control of both nitrogenases in response to ammonium. R. capsulatus has two PII proteins, GlnB and GlnK, which play key roles in nitrogenase regulation at each of three different levels: activation of transcription of the nif-specific activator NifA, the post-translational control of NifA activity, and the regulation of nitrogenase activity through either ADP-ribosylation of NifH or an ADP-ribosylation-independent pathway. We also review recent work that has led to a detailed characterization of the molybdenum transport and regulatory system in R. capsulatus that ensures activity of the Mo-nitrogenase and repression of the Fe-nitrogenase, down to extremely low levels of molybdenum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrade SL, Einsle O (2007) The Amt/Mep/Rh family of ammonium transport proteins. Mol Membr Biol 24:357–365

    Article  PubMed  CAS  Google Scholar 

  • Boeckstaens M, André B, Marini AM (2008) Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. J Biol Chem 283:21362–21370

    Article  PubMed  CAS  Google Scholar 

  • Bowman WC, Kranz RG (1998) A bacterial ATP-dependent, enhancer binding protein that activates the housekeeping RNA polymerase. Genes Dev 12:1884–1893

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Bowman WC, Hartnett DF, Reilly SC, Kranz RG (1998) Translational activation by an NtrC enhancer-binding protein. J Mol Biol 278:903–914

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Bowman WC, Kranz RG (1996) In vitro reconstitution and characterization of the Rhodobacter capsulatus NtrB and NtrC two-component system. J Biol Chem 271:6530–6536

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Foster-Hartnett D, Gabbert KK, Kranz RG (1994) Structure and expression of the alternative sigma factor, RpoN, in Rhodobacter capsulatus; Physiological relevance of an autoactivated nifU2-rpoN superoperon. Mol Microbiol 11:51–65

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev 2:621–631

    Article  CAS  Google Scholar 

  • Drepper T, Groß S, Yakunin AF, Hallenbeck PC, Masepohl B, Klipp W (2003) Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. Microbiol 149:2203–2212

    Article  CAS  Google Scholar 

  • Fischer H-M (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    PubMed  CAS  Google Scholar 

  • Fischer H-M, Bruderer T, Hennecke H (1988) Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: Identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res 16: 2207–2224

    Article  PubMed  CAS  Google Scholar 

  • Fong RN, Kim KS, Yoshihara C, Inwood WB, Kustu S (2007) The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion. Proc Natl Acad Sci USA 104:18706–18711

    Article  PubMed  CAS  Google Scholar 

  • Forchhammer K (2008) PII signal transducers: Novel functional and structural insights. Trends Microbiol 16:65–72

    Article  PubMed  CAS  Google Scholar 

  • Foster-Hartnett D, Cullen PJ, Monika EM, Kranz RG (1994) A new type of NtrC transcriptional activator. J Bacteriol 176:6175–6187

    PubMed  CAS  Google Scholar 

  • Foster-Hartnett D, Kranz RG (1992) Analysis of the promoters and upstream sequences of nifA1 and nifA2 in Rhodobacter capsulatus; activation requires ntrC but not rpoN. Mol Microbiol 6:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, Kechris KJ (2009) Conserved amino acid sequence features in the α subunits of MoFe, VFe, and FeFe nitrogenases. PLoS ONE 4:e6136

    Google Scholar 

  • Gourley DG, Schüttelkopf AW, Anderson LA, Price NC, Boxer DH, Hunter WN (2001) Oxyanion binding alters conformation and quaternary structure of the C-terminal domain of the transcriptional regulator ModE. Implications for molybdate-dependent regulation, signaling, storage, and transport. J Biol Chem 276:20641–20647

    Article  PubMed  CAS  Google Scholar 

  • Grunden AM, Shanmugam KT (1997) Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354

    Article  PubMed  CAS  Google Scholar 

  • Hall DR, Gourley DG, Leonard GA, Duke EM, Anderson LA, Boxer DH, Hunter WN (1999) The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: A novel combination of domain folds. EMBO J 18:1435–1446

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Fay AW, Lee CC, Yoshizawa J, Ribbe MW (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–3981

    Article  PubMed  CAS  Google Scholar 

  • Hübner P, Masepohl B, Klipp W, Bickle TA (1993) nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations. Mol Microbiol 10:123–132

    Article  PubMed  Google Scholar 

  • Huergo LF, Merrick M, Pedrosa FO, Chubatsu LS, Araujo LM, Souza EM (2007) Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol Microbiol 66:1523–1535

    PubMed  CAS  Google Scholar 

  • Javelle A, Merrick M (2005) Complex formation between AmtB and GlnK: An ancestral role in prokaryotic nitrogen control. Biochem Soc Trans 33:170–172

    Article  PubMed  CAS  Google Scholar 

  • Jiang P, Peliska JA, Ninfa AJ (1998a) Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with PII protein. Biochemistry 37:12782–12794

    Article  PubMed  CAS  Google Scholar 

  • Jiang P, Peliska JA, Ninfa AJ (1998b) Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37:12795–12801

    Article  PubMed  CAS  Google Scholar 

  • Jiang P, Peliska JA, Ninfa AJ (1998c) The regulation of Escherichia coli glutamine synthetase revisited: Role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37:12802–12810

    Article  PubMed  CAS  Google Scholar 

  • Joshi HM, Tabita FR (1996) A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci USA 93:14515–14520

    Article  PubMed  CAS  Google Scholar 

  • Kutsche M, Leimkühler S, Angermüller S, Klipp W (1996) Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of σ54, and repressed by molybdenum. J Bacteriol 178: 2010–2017

    PubMed  CAS  Google Scholar 

  • Lehman LJ, Roberts GP (1991) Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J Bacteriol 173:5705–5711

    PubMed  CAS  Google Scholar 

  • Lim S-K, Kim SJ, Cha SH, Oh Y-K, Rhee H-J, Kim M-S, Lee JK (2009) Complete genome sequence of Rhodobacter sphaeroides KD131. J Bacteriol 191:1118–1119

    Article  PubMed  CAS  Google Scholar 

  • Ludewig U, Neuhäuser B, Dynowsky M (2007) Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett 581:2301–2308

    Article  PubMed  CAS  Google Scholar 

  • Madigan M, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78

    PubMed  CAS  Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S, André B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    PubMed  CAS  Google Scholar 

  • Marini AM, Boeckstaens M, André B (2006) From yeast ammonium transporters to Rhesus proteins, isolation and functional characterization. Transfus Clin Biol 13:95–96

    Article  PubMed  Google Scholar 

  • Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R (2004) The NifL–NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 184:601–610

    Article  Google Scholar 

  • Masepohl B, Forchhammer K (2007) Regulatory cascades to express nitrogenase. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam pp. 131–145

    Chapter  Google Scholar 

  • Masepohl B, Kaiser B, Isakovic N, Richard CL, Kranz RG, Klipp W (2001) Urea utilization in the phototrophic bacterium Rhodobacter capsulatus is regulated by the transcriptional activator NtrC. J Bacteriol 183:637–643

    Article  PubMed  CAS  Google Scholar 

  • Masepohl B, Klipp W (1996) Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus. Arch Microbiol 165: 80–90

    Article  CAS  Google Scholar 

  • Masepohl B, Klipp W, Pühler A (1988) Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol Gen Genet 212:27–37

    Article  PubMed  CAS  Google Scholar 

  • Masepohl B, Kranz RG (2009) Regulation of nitrogen fixation. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Dordrecht pp. 759–775

    Chapter  Google Scholar 

  • Masepohl B, Krey R, Klipp W (1993) The draTG gene region of Rhodobacter capsulatus is required for post-translational regulation of both the molybdenum and the alternative nitrogenase. J Gen Microbiol 139:2667–2675

    Article  PubMed  CAS  Google Scholar 

  • Masepohl B, Schneider K, Drepper T, Müller A, Klipp W (2002) Alternative nitrogenases. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier, Amsterdam pp. 191–222

    Chapter  Google Scholar 

  • Maynard RH, Premakumar R, Bishop PE (1994) Mo-independent nitrogenase 3 is advantageous for diazotrophic growth of Azotobacter vinelandii on solid medium containing molybdenum. J Bacteriol 176:5583–5586

    PubMed  CAS  Google Scholar 

  • Oda Y, Samanta SK, Rey FE, Wu L, Liu X, Yan T, Zhou J, Harwood CS (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187:7784–7794

    Article  PubMed  CAS  Google Scholar 

  • Paschen A, Drepper T, Masepohl B, Klipp W (2001) Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammonium. FEMS Microbiol Lett 200:207–213

    Article  PubMed  CAS  Google Scholar 

  • Pau RN (2004) Molybdenum uptake and homeostasis. In: Klipp W, Masepohl B, Gallon JR, Newton WE (eds) Genetics and regulation of nitrogen fixation in free-living bacteria. Kluwer, Dordrecht pp. 225–256

    Google Scholar 

  • Pawlowski A, Riedel K-U, Klipp W, Dreiskemper P, Groß S, Bierhoff H, Drepper T, Masepohl B (2003) Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. J Bacteriol 185: 5240–5247

    Article  PubMed  CAS  Google Scholar 

  • Pierrard JP, Ludden PW, Roberts GP (1993) Posttranslational regulation of nitrogenase in Rhodobacter capsulatus: Existence of two independent regulatory effects of ammonium. J Bacteriol 175:1358–1366

    PubMed  CAS  Google Scholar 

  • Pioszak AA, Ninfa AJ (2004) Mutations altering the N-terminal receiver domain of NRI (NtrC) that prevent dephosphorylation by the NRII-PII complex in Escherichia coli. J Bacteriol 186: 5730–5740

    Article  PubMed  CAS  Google Scholar 

  • Preker P, Hübner P, Schmehl M, Klipp W, Bickle TA (1992) Mapping and characterization of the promoter elements of the regulatory nif genes rpoN, nifA1 and nifA2 in Rhodobacter capsulatus. Mol Microbiol 6:1035–1047

    Article  PubMed  CAS  Google Scholar 

  • Rey FE, Heiniger EK, Harwood CS (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73:1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Rutherford JC, Chua G, Hughes T, Cardenas ME, Heitman J (2008) A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. Mol Biol Cell 19:3028–3039

    Article  PubMed  CAS  Google Scholar 

  • Schmehl M, Jahn A, Meyer zu Vilsendorf A, Hennecke S, Masepohl B, Schuppler M, Marxer M, Oelze J, Klipp W (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: A putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Gollan U, Selsemeier-Voigt S, Plass W, Müller A (1994) Rapid purification of the protein components of a highly active “iron only” nitrogenase. Naturwissenschaften 81: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Schüddekopf K, Hennecke S, Liese U, Kutsche M, Klipp W (1993) Characterization of anf genes specific for the alternative nitrogenase and identification of nif genes required for both nitrogenases in Rhodobacter capsulatus. Mol Microbiol 8:673–684

    Article  PubMed  Google Scholar 

  • Schüttelkopf AW, Boxer DH, Hunter WN (2003) Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains. J Mol Biol 326:761–767

    Article  PubMed  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  PubMed  CAS  Google Scholar 

  • Self WT, Grunden AM, Hasona A, Shanmugam KT (2001) Molybdate transport. Res Microbiol 152:311–321

    Article  PubMed  CAS  Google Scholar 

  • Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methyl ammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034

    Article  PubMed  CAS  Google Scholar 

  • Tremblay P-L, Drepper T, Masepohl B, Hallenbeck PC (2007) Membrane sequestration of PII proteins and nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 189:5850–5859

    Article  PubMed  CAS  Google Scholar 

  • Tremblay P-L, Hallenbeck PC (2008) Ammonia-induced formation of an AmtB-GlnK complex is not sufficient for nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 190:1588–1594

    Article  PubMed  CAS  Google Scholar 

  • Tremblay P-L, Hallenbeck PC (2009) Of blood, brains and bacteria, the Amt/Rh transporter family: Emerging role of Amt as a unique microbial sensor. Mol Microbiol 71:12–22

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Angermüller S, Klipp W (1993) Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum–pterin-binding proteins. J Bacteriol 175:3031–3042

    PubMed  CAS  Google Scholar 

  • Wang H, Franke CC, Nordlund S, Norén A (2005) Reversible membrane association of dinitrogenase reductase activating glycohydrolase in the regulation of nitrogenase activity in Rhodospirillum rubrum; dependence on GlnJ and AmtB1. FEMS Microbiol Lett 253: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Wiethaus J, Müller A, Neumann M, Neumann S, Leimkühler S, Narberhaus F, Masepohl B (2009) Specific interactions between four molybdenum-binding proteins contribute to Mo-dependent gene regulation in Rhodobacter capsulatus. J Bacteriol 191:5205–5215

    Article  PubMed  CAS  Google Scholar 

  • Wiethaus J, Wirsing A, Narberhaus F, Masepohl B (2006) Overlapping and specialized functions of the molybdenum-dependent regulators MopA and MopB in Rhodobacter capsulatus. J Bacteriol 188:8441–8451

    Article  PubMed  CAS  Google Scholar 

  • Wolfe DM, Zhang Y, Roberts GP (2007) Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum. J Bacteriol 189:6861–6869

    Article  PubMed  CAS  Google Scholar 

  • Yakunin AF, Fedorov AS, Laurinavichene TV, Glaser VM, Egorov NS, Tsygankov A, Zinchenko VS, Hallenbeck PC (2001) Regulation of nitrogenase in the photosynthetic bacterium Rhodobacter sphaeroides containing draTG and nifHDK genes from Rhodobacter capsulatus. Can J Microbiol 47:206–212

    PubMed  CAS  Google Scholar 

  • Yakunin AF, Hallenbeck PC (1998) Short-term nitrogenase regulation in Rhodobacter capsulatus: Multiple in vivo nitrogenase responses to NH4 + addition. J Bacteriol 180:6392–6395

    PubMed  CAS  Google Scholar 

  • Yakunin AF, Hallenbeck PC (1999) The presence of ADP-ribosylated Fe protein of nitrogenase in Rhodobacter capsulatus is correlated with the cellular nitrogen status. J Bacteriol 181: 1994–2000

    PubMed  CAS  Google Scholar 

  • Yakunin AF, Hallenbeck PC (2000) Regulation of nitrogenase activity in Rhodobacter capsulatus under dark microoxic conditions. Arch Microbiol 173:366–372

    Article  PubMed  CAS  Google Scholar 

  • Yakunin AF, Hallenbeck PC (2002) AmtB is necessary for NH4 +-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J Bacteriol 184:4081–4088

    Article  PubMed  CAS  Google Scholar 

  • Yildiz O, Kalthoff C, Raunser, Kuhlbrandt W (2007) Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake. EMBO J 26:589–599

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Cummings AD, Burris RH, Ludden PW, Roberts GP (1995) Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. J Bacteriol 177:5322–5326

    PubMed  CAS  Google Scholar 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2000) Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 182:983–992

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pohlmann EL, Ludden PW, Roberts GP (2001) Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum: Roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pohlmann EL, Roberts GP (2005) GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum. J Bacteriol 187:1254–1265

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP (2006) Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. Microbiology 152:2075–2089

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Conrad MC, Zhang Y, Roberts GP (2006) Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. J Bacteriol 188:1866–1874

    Article  PubMed  CAS  Google Scholar 

  • Zinchenko V, Babykin M, Glaser S, Mekhedov S, Shestakov S (1997) Mutation in ntrC gene leading to the derepression of nitrogenase synthesis in Rhodobacter sphaeroides. FEMS Microbiol Lett 147:57–61

    Article  PubMed  CAS  Google Scholar 

  • Zou X, Zhu Y, Pohlmann EL, Li J, Zhang Y, Roberts GP (2008) Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. Microbiology 154:2689–2699

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories is supported by Deutsche Forschungsgemeinschaft (BM) and the Natural Sciences and Engineering Research Council of Canada Discovery Grants Program (PCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Masepohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Masepohl, B., Hallenbeck, P.C. (2010). Nitrogen and Molybdenum Control of Nitrogen Fixation in the Phototrophic Bacterium Rhodobacter capsulatus . In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_4

Download citation

Publish with us

Policies and ethics