Skip to main content

Macro and Micro Soft-Tissue Biomechanics and Tissue Damage: Application in Surgical Robotics

  • Chapter
  • First Online:
Surgical Robotics

Abstract

Accurate knowledge of biomechanical characteristics of tissues is essential for developing realistic computer-based surgical simulators incorporating haptic feedback, as well as for the design of surgical robots and tools. Most past and current biomechanical research is focused on soft and hard anatomical structures that are subject to physiological loading while testing the organs in situ. Internal organs are different in that respect since they are not subject to extensive loads as part of their regular physiological function. However, during surgery, a different set of loading conditions are imposed on these organs as a result of the interaction with the surgical tools. The focus of the current study was to obtain the structural biomechanical properties (engineering stress-strain and stress relaxation) of seven abdominal organs, including bladder, gallbladder, large and small intestines, liver, spleen, and stomach, using a porcine animal model. The organs were tested in vivo, in situ, and ex corpus (the latter two conditions being postmortem) under cyclical and step strain compressions using a motorized endoscopic grasper and a universal-testing machine. The tissues were tested with the same loading conditions commonly applied by surgeons during minimally invasive surgical procedures. Phenomenological models were developed for the various organs, testing conditions, and experimental devices. A property database—unique to the literature—has been created that contains the average elastic and relaxation model parameters measured for these tissues in vivo and postmortem. The results quantitatively indicate the significant differences between tissue properties measured in vivo and postmortem. A quantitative understanding of how the unconditioned tissue properties and model parameters are influenced by time postmortem and loading condition has been obtained. The results provide the material property foundations for developing science-based haptic surgical simulators, as well as surgical tools for manual and robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madhani, A.J., Niemeyer, G., Salisbury, J.K. Jr.: The Black Falcon: a teleoperated surgical instrument for minimally invasive surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, New York, NY, 1998, vol. 2, pp. 936–944

    Google Scholar 

  2. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer Verlag, New York (1993)

    Google Scholar 

  3. Fung, Y.C.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213(6), 1532–1544 (1967)

    Google Scholar 

  4. Yamada, H.: Strength of Biological Materials. Robert E. Krieger Publishing, Huntington, NY (1973)

    Google Scholar 

  5. Yoganandan, N., Pintar, F.A., Maltese, M.R.: Biomechanics of abdominal injuries. Crit. Rev. Biomed. Eng. 29(2), 173–246 (2001)

    Google Scholar 

  6. Rouhana, S.W.: Biomechanics of abdominal trauma. In: Nahum, A.M., Melvin, J.W. (eds.) Accidental Injury: Biomechanics and Prevention, pp. 391–428. Springer-Verlag, New York (1993)

    Google Scholar 

  7. Liu, Z., Bilston, L.: On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37(3), 191 (2000)

    Google Scholar 

  8. Arbogast, K.B., Thibault, K.L., Pinheiro, B.S., Winey, K.I., Margulies, S.S.: A high-frequency shear device for testing soft biological tissues. J. Biomech. 30(7), 757–759 (1997)

    Article  Google Scholar 

  9. Dokos, S., LeGrice, I.J., Smaill, B.H., Kar, J., Young, A.A.: A triaxial-measurement shear-test device for soft biological tissues. Trans. ASME J. Biomech. Eng. 122(5), 471–478 (2000)

    Article  Google Scholar 

  10. Gao, C.W., Gregersen, H.: Biomechanical and morphological properties in rat large intestine. J. Biomech. 33(9), 1089 (2000)

    Article  Google Scholar 

  11. Gregersen, H., Emery, J.L., McCulloch, A.D.: History-dependent mechanical behavior of guinea-pig small intestine. Ann. Biomed. Eng. 26(5), 850 (1998)

    Article  Google Scholar 

  12. Carter, F.J., Frank, T.G., Davies, P.J., Cuschieri, A.: Puncture forces of solid organ surfaces. Surg. Endosc. 14(9), 783–786 (2000)

    Article  Google Scholar 

  13. Carter, F.J., Frank, T.G., Davies, P.J., McLean, D., Cuschieri, A.: Measurements and modelling of the compliance of human and porcine organs. Med. Image Anal. 5(4), 231–236 (2001)

    Article  Google Scholar 

  14. Davies, P.J., Carter, F.J., Cuschieri, A.: Mathematical modelling for keyhole surgery simulations: a biomechanical model for spleen tissue. IMA J. Appl. Math. 67, 41–67 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tamura, A., Omori, K., Miki, K., Lee, J.B., Yang, K.H., King, A.I.: Mechanical characterization of porcine abdominal organs. In: Proceedings of the 46th Stapp Car Crash Conference, 2002, vol. 46, pp. 55–69

    Google Scholar 

  16. Melvin, J.W., Stalnaker, R.L., Roberts, V.L., Trollope, M.L.: Impact injury mechanisms in abdominal organs. In: Proceedings of the 17th Stapp Car Crash Conference, 1973, pp. 115–126

    Google Scholar 

  17. Zheng, Y.P., Mak, A.F.T., Lue, B.: Objective assessment of limb tissue elasticity: development of a manual indentation procedure. J. Rehabil. Res. Dev. 36(2) (1999)

    Google Scholar 

  18. Zheng, Y.P., Mak, A.F.T.: Extraction of quasi-linear viscoelastic parameters for lower limb soft tissues from manual indentation experiment. J. Biomech. Eng. 121(3), 330–339 (1999)

    Article  Google Scholar 

  19. Pathak, A.P., Silver, T.M.B., Thierfelder, C.A., Prieto, T.E.: A rate-controlled indentor for in vivo analysis of residual limb tissues. IEEE Trans. Rehabil. Eng. 6(1), 12–20 (1998)

    Article  Google Scholar 

  20. Brouwer, I., Ustin, J., Bentley, L., Sherman, A., Dhruv, N., Tendick, F.: Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation. Stud. Health Technol. Inform. 81, 69–74 (2001)

    Google Scholar 

  21. Ottensmeyer, M.P., Salisbury, J.: In-vivo mechanical tissue property measurement for improved simulations. Proc. SPIE 4037, 286–293 (2000)

    Article  Google Scholar 

  22. Kalanovic, D., Ottensmeyer, M.P., Gross, J., Buess, G., Dawson, S.L.: Independent testing of soft tissue viscoelasticity using indentation and rotary shear deformations. In: Medicine Meets Virtual Reality, Newport Beach, CA, 22–25 January. Stud. Health Technol. Inform. 94, 137–143 (2003)

    Google Scholar 

  23. Bicchi, A., Canepa, G., De, R.D., Iacconi, P., Scillingo, E.P.: A sensor-based minimally invasive surgery tool for detecting tissue elastic properties. In: Proceedings 1996 IEEE International Conference on Robotics and Automation, New York, NY, 1996, vol. 1, pp. 884–888

    Google Scholar 

  24. Morimoto, A.K., Foral, R.D., Kuhlman, J.L., Zucker, K.A., Curet, M.J., Bocklage, T., MacFarlane, T.I., Kory, L.: Force sensor for laparoscopic Babcock. In: Medicine Meets Virtual Reality, 1997, pp. 354–361

    Google Scholar 

  25. Greenish, S., Haywar0, V., Chial, V., Okamura, A., Steffen, T.: Measurement, analysis, and display of haptic signals during surgical cutting. Presence Teleop. Virt. Environ. 11(6), 626–651 (2002)

    Article  Google Scholar 

  26. Brown, J.D., Rosen, J., Longnion, J., Sinanan, M., Hannaford, B.: Design and performance of a surgical tool tracking system for minimally invasive surgery. In: ASME International Mechanical Engineering Congress and Exposition, Advances in Bioengineering, New York, 11–16 November 2001, vol. 51, pp. 169–170

    Google Scholar 

  27. Rosen, J., Brown, J.D., Barreca, M., Chang, L., Hannaford, B., Sinanan, M.: The Blue DRAGON – a system for monitoring the kinematics and the dynamics of endoscopic tools in minimally invasive surgery for objective laparoscopic skill assessment. In: Medicine Meets Virtual Reality, Newport Beach, CA, 23–26 January 2002. Stud. Health Technol. Inform. 85, 412–418 (2002)

    Google Scholar 

  28. Rosen, J., Brown, J.D., Barreca, M., Chang, L., Sinanan, M., Hannaford, B.: The BlueDRAGON – a system for measuring the kinematics and the dynamics of minimally invasive surgical instruments in-vivo. In: 2002 IEEE International Conference on Robotics and Automation, Washington, DC, 2002, vol. 2, pp. 1876–1881

    Google Scholar 

  29. Rosen, J., Hannaford, B., MacFarlane, M.P., Sinanan, M.N.: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery – experimental performance evaluation. IEEE Trans. Biomed. Eng. 46(10), 1212–1221 (1999)

    Article  Google Scholar 

  30. Brown, J.D., Rosen, J., Moreyra, M., Sinanan, M., Hannaford, B.: Computer-controlled motorized endoscopic grasper for in vivo measurement of soft tissue biomechanical characteristics. In: Medicine Meets Virtual Reality, Newport Beach, CA, 23–26 January. Stud. Health Technol. Inform. 85, 71–73 (2002)

    Google Scholar 

  31. Brown, J.D., Rosen, J., Kim, Y.S., Chang, L., Sinanan, M.N., Hannaford, B.: In-vivo and in-situ compressive properties of porcine abdominal soft tissues. In: Medicine Meets Virtual Reality, Newport Beach, CA, 22–25 January. Stud. Health Technol. Inform. 94, 26–32 (2003)

    Google Scholar 

  32. Brown, J.D., Rosen, J., Sinanan, M.N., Hannaford, B.: In-vivo and postmortem compressive properties of porcine abdominal organs. In: MICCAI 2003, Montreal, Canada. Lecture Notes in Computer Science, 2003, vol. 2878, pp. 238–245

    Google Scholar 

  33. Mkandawire, C., Ledoux, W., Sangeorzan, B., Ching, R.: A quasi-linear viscoelastic model of foot-ankle ligaments. In: 25th Annual Meeting of the American Society of Biomechanics, University of California-San Diego, San Diego, CA, 8–11 August 2001

    Google Scholar 

  34. Woo, S.L., Simon, B.R., Kuei, S.C., Akeson, W.H.: Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Eng. 102(2), 85–90 (1980)

    Article  Google Scholar 

  35. Mow, V.C., Kuei, S.C., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. Trans. ASME J. Biomech. Eng. 102(1), 73–84 (1980)

    Article  Google Scholar 

  36. Ateshian, G.A., Warden, W.H., Kim, J.J., Grelsamer, R.P., Maw, V.C.: Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30(11/12), 1157–1164 (1997)

    Google Scholar 

  37. DiSilvestro, M.R., Suh, J.K.: A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34(4), 519–525 (2001)

    Article  Google Scholar 

  38. DiSilvestro, M.R., Qiliang, Z., Marcy, W., Jurvelin, J.S., Jun, K.F.S.: Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I-Simultaneous prediction of reaction force and lateral displacement. Trans. ASME. J. Biomech. Eng. 123(2), 191–197 (2001)

    Article  Google Scholar 

  39. DiSilvestro, M.R., Qiliang, Z., Jun, K.F.S.: Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II-Effect of variable strain rates. Trans. ASME. J. Biomech. Eng. 123(2), 198–200 (2001)

    Article  Google Scholar 

  40. Fortin, M., Hat, J., and Hmann, M.D.: Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122(2), 189–195 (2000)

    Google Scholar 

  41. Suh, J.K., Spilker, R.L.: Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation. J. Biomech. Eng. 116(1), 1–9 (1994)

    Article  Google Scholar 

  42. Lai, W.M., Hou, J.S., Mow, V.C.: A triphasic theory for the swelling and deformation behaviors behaviors of articular cartilage. Trans. ASME. J. Biomech. Eng. 113(3), 245–258 (1991)

    Article  Google Scholar 

  43. Brown, J.R.: J.; Chang, L.; Sinanan, M.N.; Hannaford, B., Quantifying surgeon grasping mechanics in laparoscopy using the Blue DRAGON system. Medicine Meets Virtual Reality. Stud. Health Technol. Inform. 98, 34–36 (2004)

    Google Scholar 

  44. Farshad, M., Barbezat, M., Flueler, P., Schmidlin, F., Graber, P., Niederer, P.: Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32(4), 417–425 (1999)

    Article  Google Scholar 

  45. Wang, J., Brienza, D.M., Bertocci, G., Karg, P.: Stress relaxation properties of buttock soft tissues: in vivo indentation test. In: Proceedings of the RESNA 2001 Annual Conference, RESNA, Reno, Nevada, 22–26 June 2001, pp. 391–393

    Google Scholar 

  46. Simon, B.R., Coats, R.S., Woo, S.L.: Relaxation and creep quasilinear viscoelastic models for normal articular cartilage. J. Biomech. Eng. 106(2), 159–164 (1984)

    Article  Google Scholar 

  47. De, S., et al.: Assessment of tissue damage due to Mechanical Stresses, Int. J. Rob. Res. 26, 1159 (2007)

    Article  MathSciNet  Google Scholar 

  48. Niculescu, G., Foran, D.J., Nosher, J.: Non-rigid registration of the liver in consecutive CT studies for assessment of tumor response to radiofrequency ablation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 856 (2007)

    Google Scholar 

  49. Brock, K.K., Sharpe, M.B., Dawson, L.A., Kim, S.M., Jaffray, D.A.: Accuracy of finite element model-based multi-organ deformable image registration. Med. Phys. 32, 1647 (2005)

    Article  Google Scholar 

  50. Chui, C., Kobayashi, E., Chen, X., Hisada, T., Sakuma, I.: Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Med. Biol. Eng. Comput. 42, 787 (2004)

    Article  Google Scholar 

  51. Sasaki, N., Odajima, S.: Stress–strain curve and Young's modulus of collagen molecules as determined by the X-ray diffraction technique. J. Biomech. 29, 655–658 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosen, J., Brown, J., De, S., Hannaford, B. (2011). Macro and Micro Soft-Tissue Biomechanics and Tissue Damage: Application in Surgical Robotics. In: Rosen, J., Hannaford, B., Satava, R. (eds) Surgical Robotics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1126-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1126-1_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1125-4

  • Online ISBN: 978-1-4419-1126-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics