Skip to main content

Single and Multiple Robotic Capsules for Endoluminal Diagnosis and Surgery

  • Chapter
  • First Online:
Surgical Robotics
  • 4708 Accesses

Abstract

The present chapter illustrates robotic approaches to endolomuninal diagnosis and therapy of hollow organs of the human body, with a specific reference to the gastrointestinal (GI) tract. It gives an overview of the main technological and medical problems to be approached when dealing with miniaturized robots having a pill-like size, which are intended to explore the GI tract teleoperated by clinicians with high precision, flexibility, effectiveness and reliability. Considerations on different specifications for diagnostic and surgical swallowable devices are presented, by highlighting problems of power supply, dynamics, kinematics and working space. Two possible solutions are presented with details about design issues, fabrication and testing: the first solution consists of the development of active capsules, 2–3 cm3 in volume, for teleoperated diagnosis in the GI tract; the second solution illustrates a multiple capsule approach allowing to overcome power supply and working space problems, that are typical in single capsule solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuschieri, A., Melzer, A.: The impact of technologies on minimally invasive therapy. Surg. Endosc. 11, 91–92 (1997)

    Article  Google Scholar 

  2. Phee, L., Accoto, D., Menciassi, A., Stefanini, C., Carrozza, M.C., Dario, P.: Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng. 49, 613–616 (2002)

    Article  Google Scholar 

  3. Hu, C., Meng, M.Q.H., Mandal, M.: Efficient magnetic localization and orientation technique for capsular endoscopy. Int. J. Inf. Acquisition 2, 23–26, (2005)

    Article  Google Scholar 

  4. Lehman, A.C., Rentschler, M.E., Farritor, S.M., Oleynikov, D.: The current state of miniature in vivo laparoscopic robotics. J. Robot. Surg. 1, 45–49 (2007)

    Article  Google Scholar 

  5. Yonezawa, J., Kaise, M., Sumiyama, K., Goda, K., Arakawa, H., Tajiri, H.: A novel double-channel therapeutic endoscope (“R-scope”) facilitates endoscopic submucosal dissection of superficial gastric neoplasms. Endoscopy 38, 1011–1015 (2006)

    Article  Google Scholar 

  6. Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23(4–5), 549–556 (2004)

    Article  Google Scholar 

  7. Menciassi, A., Stefanini, C., Gorini, S., Pernorio, G., Dario, P., Kim, B., Park, J.O.: Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity. IEEE Int. Conf. Intell. Robots.Syst. 1, 937–942 (2004)

    Google Scholar 

  8. Stefanini, C., Menciassi, A., Dario, P.: Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment. Int. J. Robot. Res. 25(5–6), 551–560 (2006)

    Article  Google Scholar 

  9. Dutta, S.M., Ghorbel, F.H.: Differential hysteresis modeling of a shape memory alloy wire actuator. IEEE/ASME Trans. Mechatron. 10(2), 189–197 (2005)

    Article  Google Scholar 

  10. Gorini, S., Quirini, M., Menciassi, A., Pernorio, G., Stefanini, C., Dario, P.: A novel sma-based actuator for a legged endoscopic capsule. In: Proceedings of IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics – BioRob (2006)

    Google Scholar 

  11. Quirini, M., Menciassi, A., Scapellato, S., Stefanini, C., Dario, P.: Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE/ASME Trans. Mechatron. 13(2), 169–179 (2008)

    Article  Google Scholar 

  12. Quirini, M., Scapellato, S., Menciassi, A., Dario, P., Rieber, F., Ho, C.N., Schostek, S., Schurr, M.O.: Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest. Endosc. 67(7), 1153–1158 (2008)

    Article  Google Scholar 

  13. Valdastri, P., Webster, R.J. III, Quaglia, C., Quirini, M., Menciassi, A., Dario, P.: A new mechanism for meso-scale legged locomotion in compliant tubular environments. IEEE Trans. Robot. 25(5), 1047–1057 (2009)

    Article  Google Scholar 

  14. Quaglia, C., Buselli, E., Webster, R.J. III, Valdastri, P., Menciassi, A., Dario, P.: An endoscopic capsule robot: a meso-scale engineering case study. J. Micromech. Microeng. 19(10), 105007 (2009)

    Article  Google Scholar 

  15. Tortora, G., Valdastri, P., Susilo, E., Menciassi, A., Dario, P., Rieber, F., Schurr, M.O.: Propeller-based wireless device for active capsular endoscopy in the gastric district. MITAT 18(5), 280–290 (2009)

    Article  Google Scholar 

  16. Arezzo, A.: Prospective randomized trial comparing bowel cleaning preparations for colonoscopy. Surg. Laparosc. Endosc. Percutan. Tech. 10, 215–217 (2000)

    MathSciNet  Google Scholar 

  17. Schanz, S.: Bowel preparation for colonoscopy with sodium phosphate solution versus polyethylene glycol-based lavage: a multicenter trial. Diagn. Ther. Endosc. 713521 (2008)

    Google Scholar 

  18. Rieber, F., Tognoni, V., Cenci, L., di Lorenzo, N., Schurr, M.O.: Capsule endoscopy of the entire GI tract. In: SMIT annual meeting (2008)

    Google Scholar 

  19. Hebert, J.J., Taylor, A.J., Winter, T.C., Reichelderfer, M., Weichert, J.P.: Low attenuation oral GI contrast agents in abdominal-pelvic computed tomography. Abdom. Imaging 31, 48–53 (2006)

    Article  Google Scholar 

  20. Quirini, M., Menciassi, A., Scapellato, S., Dario, P., Rieber, F., Ho, C., Schostek, S., Schurr, M.O.: Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointest. Endosc. 67, 1153–1158 (2008)

    Article  Google Scholar 

  21. Dario, P., Menciassi, A., Valdastri, P., Tortora, G.: Dispositivo endoscopico wireless a propulsione autonoma per esplorazione gastrica. Italian Patent BI865F/FMB/fpd (2008)

    Google Scholar 

  22. Valdastri, P., Menciassi, A., Dario, P.: Transmission power requirements for novel zigbee implants in the gastrointestinal tract. IEEE Trans. Biomed. Eng. 55, 1705–1710 (2008)

    Article  Google Scholar 

  23. Carta, R., Lenaerts, B., Thoné, J., Tortora, G., Valdastri, P., Menciassi, A., Puers, R., Dario, P.: Wireless power supply as enabling technology towards active locomotion in capsular endoscopy. Biosens. Bioelectron. 25(4), 845–851 (2009)

    Article  Google Scholar 

  24. Valdastri, P., Quaglia, C., Susilo, E., Menciassi, A., Dario, P., Ho, C.N., Anhoeck, G., Schurr, M.O.: Wireless therapeutic endoscopic capsule: in-vivo experiment. Endoscopy. 40, 979–982 (2008)

    Article  Google Scholar 

  25. Kirschniak, A., Kratt, T., Stuker, D., Braun, A., Schurr, M.O., Konigsrainer, A.: A new endoscopic over-the-scope clip system for treatment of lesions and bleeding in the GI tract: first clinical experiences. Gastrointest. Endosc. 66, 162–167 (2007)

    Article  Google Scholar 

  26. Schurr, M.O., Hartmann, C., Ho, C.N., Fleisch, C., Kirschniak, A.: An over-the-scope clip (OTSC) system for closure of iatrogenic colon perforations: results of an experimental survival study in pigs. Endoscopy 40, 584–588 (2008)

    Article  Google Scholar 

  27. Raju, G.S., Gajula, L.: Endoclips for GI endoscopy. Gastrointest. Endosc. 59, 267–79 (2004)

    Article  Google Scholar 

  28. Given Imaging Ltd. website. http://www.givenimaging.com

  29. Cavallotti, C., Piccigallo, M., Susilo, E., Valdastri, P., Menciassi, A., Dario, P.: An integrated vision system with autofocus for wireless capsular endoscopy, Sens. Actuators. A Phys. 156(1), 72–78 (2009)

    Article  Google Scholar 

  30. Cheng, Y., Lai, J.: Fabrication of meso-scale underwater vehicle components by rapid prototyping process. J. Mater. Process. Technol. 201, 640–644 (2008)

    Article  Google Scholar 

  31. Valdastri, P., Quaglia, C., Menciassi, A., Dario, P., Ho, C.N., Anhoeck, G., Schoesteck, Rieber F., Schurr, M.O.: Surgical clip releasing wireless capsule, European patent application 08425604.9, filed on 16/09/2008

    Google Scholar 

  32. Ramcharitar, S., Patterson, M.S., van Geuns, R.J., van Meighem, C., Serruys, P.W.: Technology insight: magnetic navigation in coronary interventions. Nat. Clin. Pract. Cardiovasc. Med. 5, 148–156 (2008)

    Article  Google Scholar 

  33. Swain, P.: The future of wireless capsule endoscopy. World J. Gastroenterol. 14, 4142–4145 (2008)

    Article  Google Scholar 

  34. Bardaro, S.J., Swanström, L.: Development of advanced endoscopes for natural orifice transluminal endoscopic surgery (NOTES). Minim. Invasive Ther. Allied Technol. 15(6), 378–383 (2006)

    Article  Google Scholar 

  35. The ares (assembling reconfigurable endoluminal surgical system), Project Website http://www.ares-nest.org (2006)

  36. Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell Structures – CKBOT. In: IEEE International Workshop on Intelligent Robots, pp. 145–150 (1988)

    Google Scholar 

  37. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H.: Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [Grand Challenges of Robotics]. IEEE Robot. Autom. Mag. 14(1), 865–872 (2007)

    Google Scholar 

  38. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14, 71–78 (2007)

    Article  Google Scholar 

  39. World Health Organisation, Fact sheet n.297, Online: http://www.who.int/mediacen-ter/factsheets/fs297 (2006)

  40. Pesic, M., Karanikolic, A., Djordjevic, N., Katic, V., Rancic, Z., Radojkovic, M.: Ignjatovic, N., Pesic, I.: The importance of primary gastric cancer location in 5-year survival rate. Arch.Oncol. 12, 51–53 (2004)

    Article  Google Scholar 

  41. Harada, K., Susilo, E., Ng Pak, N., Menciassi, A., Dario, P.: Design of a bending module for assembling reconfigurable endoluminal surgical system. In: Proceedings of the 6th International Conference of International Society of Gerontechnology (ISG’08), Pisa, Italy, pp. ID–186, 4–7 June 2008

    Google Scholar 

  42. Nagy, Z., Oung, R., Abbott, J.J., Nelson, B.J.: Experimental investigation of magnetic selfassembly for swallowable modular robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1915–1920, 22–26 Sept 2008

    Google Scholar 

  43. Susilo, E., Valdastri, P., Menciassi, A., Dario, P.: A miniaturized wireless control platform for robotic capsular endoscopy using advanced pseudokernel approach. Sens. Actuators A Phys. 156(1), 49–58 (2009)

    Article  Google Scholar 

  44. Nagy, Z., Abbott, J., Nelson, B.: The magnetic self-aligning hermaphroditic connector: a scalable approach for modular microrobotics. In: Proceeding of IEEE/ASME International Conference Advanced Intelligent Machatronics, pp. 1–6, Zurich, (2007)

    Google Scholar 

  45. Oetomo, D., Daney, D., Harada, K., Merlet, J.P., Menciassi, A., Dario, P.: Topology design of surgical reconfigurable robots by interval analysis. In: IEEE International Conference on Robotics and Automation (ICRA2009), pp. 3085–3090 (2009)

    Google Scholar 

  46. ARAKNES Project Website www.araknes.org (2008)

  47. Lehman, A.C., Dumpert, J., Wood, N.A., Redden, L., Visty, A.Q., Farritor, S., Varnell, B., Oleynikov, D.: Natural orifice cholecystectomy using a miniature robot, Surg. Endosc. 23(2), 260–266 (2009)

    Article  Google Scholar 

  48. Harada, K., Susilo, E., Menciassi, A., Dario, P.: Wireless reconfigurable modules for robotic endoluminal surgery. In: IEEE International Conference on Robotics and Automation. ICRA ’09, pp. 2699–2704 (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the European Commission, in the framework of the ARES (Assembling Reconfigurable Endoluminal Surgical system) and VECTOR (Versatile Endoscopic Capsule for gastrointestinal TumOr Recognition and therapy) European Projects, and in part by the Intelligent Microsystem Center (IMC-KIST, Seoul, South Korea) in the framework of the OPTIMUS project. The authors would like to thank Professor Alfred Cuschieri for his medical consultancy. The authors are grateful to Dr. E. Susilo and Ms. S. Condino for their invaluable technical support and Mr. N. Funaro for the manufacturing of the prototypes. The authors thank Dr. D. Oetomo, University of Melbourne, Australia and Mr. Z. Nagy, ETH Zurich, Switzerland for technical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Menciassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Menciassi, A., Valdastri, P., Harada, K., Dario, P. (2011). Single and Multiple Robotic Capsules for Endoluminal Diagnosis and Surgery. In: Rosen, J., Hannaford, B., Satava, R. (eds) Surgical Robotics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1126-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1126-1_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1125-4

  • Online ISBN: 978-1-4419-1126-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics