Skip to main content

Novel Functions of RANK(L) Signaling in the Immune System

  • Conference paper
  • First Online:
Osteoimmunology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 658))

Abstract

The TNF family members RANKL and its receptor RANK have initially been described as factors expressed on T cells and dendritic cells (DCs), respectively, and have been shown to augment the ability of DCs to stimulate naive T cell proliferation and enhance DC survival. Since another, yet soluble receptor for RANKL, namely OPG, was initially characterized as a factor inhibiting osteoclast development and bone resorption, it was somewhat enigmatic at first why one and the same genes would be essential both for the immune system and bone development – two processes that on first sight do not have much in common. However, in a series of experiments it was conclusively shown that RANKL-expressing T cells can also activate RANK-expressing osteoclasts, and thereby in principal mimicking RANKL-expressing osteoblasts. These findings lead to a paradigm shift and helped to coin the term osteoimmunology in order to account for the crosstalk of immune cells and bone. More importantly was that these findings also provided a rationale for the bone loss observed in patients with a chronically activated immune system such as in rheumatoid arthritis, leukemias, or the like, arguing that T cells, which were activated during the course of the disease to fight it off, also express RANKL, which induces osteoclastogenesis and thereby shifts the intricate balance of bone deposition and resorption in favor of the latter. Through knockout mice it became also clear that the RANKL-RANK-OPG system is involved in other processes such as in controlling autoimmunity or immune responses in the skin. We will briefly summarize the role of RANK(L) signaling in the immune system before we discuss some of the recent data we and others have obtained on the role of RANK(L) in controlling autoimmunity and immune responses in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TNF:

Tumor Necrosis Factor

RANKL:

Receptor Activator of Nuclear Factor-κB (NF-κB) Ligand

RANK:

Receptor Activator of Nuclear Factor-κB (NF-κB)

OPG:

Osteoprotegerin

DCs:

Dendritic Cells

LT:

Lymphotoxin

PPs:

Peyer’s Patches

LNs:

Lymph Nodes

ALPS:

Autoimmune Lymphoproliferative Syndrome

cTEC:

Cortical Thymic Epithelial Cell

mTEC:

Medullary Thymic Epithelial Cell

TRA:

Tissue Restricted Antigen

AIRE:

Autoimmune Regulator

LTi:

Lymphoid Tissue Inducer

Tregs:

eRgulatory T Cells

LCs:

Langerhans Cells

RA:

Rheumatoid Arthritis

BMD:

Bone Mineral Density

References

  1. Abu-Amer, Y. (2001). IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J Clin Invest, 107: 1375–1385.

    Article  CAS  PubMed  Google Scholar 

  2. Akiyama, T., Shimo, Y., Yanai, H. et al. (2008). The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity, 29: 423–437.

    Article  CAS  PubMed  Google Scholar 

  3. Alimzhanov, M.B., Kuprash, D.V., Kosco-Vilbois, M.H. et al. (1997). Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A, 94: 9302–9307.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, G., Lane, P.J., & Jenkinson, E.J. (2007). Generating intrathymic microenvironments to establish T-cell tolerance. Nat Rev Immunol, 7: 954–963.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson, D.M., Maraskovsky, E., Billingsley, W.L. et al. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390: 175–179.

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, M.S., Venanzi, E.S., Klein, L. et al. (2002). Projection of an immunological self shadow within the thymus by the aire protein. Science, 298: 1395–1401.

    Article  CAS  PubMed  Google Scholar 

  7. Bachmann, M.F., Wong, B.R., Josien, R. et al. (1999). TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med, 189: 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  8. Banchereau, J., & Steinman, R.M. (1998). Dendritic cells and the control of immunity. Nature, 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  9. Bendele, A., McComb, J., Gould, T. et al. (1999). Animal models of arthritis: relevance to human disease. Toxicol Pathol, 27: 134–142.

    Article  CAS  PubMed  Google Scholar 

  10. Bendixen, A.C., Shevde, N.K., Dienger, K.M. et al. (2001). IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Proc Natl Acad Sci USA, 98: 2443–2448; Akiyama, T., Maeda, S., Yamane, S. et al. (2005). Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science, 308: 248–251.

    Article  CAS  PubMed  Google Scholar 

  11. Boehm, T., Scheu, S., Pfeffer, K. et al. (2003). Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med, 198: 757–769.

    Article  CAS  PubMed  Google Scholar 

  12. Body, J.J., Facon, T., Coleman, R.E. et al. (2006). A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res, 12: 1221–1228.

    Article  CAS  PubMed  Google Scholar 

  13. Bone, H.G., Bolognese, M.A., Yuen, C.K. et al. (2008). Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab, 93: 2149–2157.

    Article  CAS  PubMed  Google Scholar 

  14. Brandt, J., Haibel, H., Cornely, D. et al. (2000). Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum, 43: 1346–1352.

    Article  CAS  PubMed  Google Scholar 

  15. Campagnuolo, G., Bolon, B., & Feige, U. (2002). Kinetics of bone protection by recombinant osteoprotegerin therapy in Lewis rats with adjuvant arthritis. Arthritis Rheum, 46: 1926–1936; Bolon, B., Campagnuolo, G., & Feige, U. (2002). Duration of bone protection by a single osteoprotegerin injection in rats with adjuvant-induced arthritis. Cell Mol Life Sci, 59: 1569–1576.

    Article  CAS  PubMed  Google Scholar 

  16. Chin, R.K., Lo, J.C., Kim, O. et al. (2003). Lymphotoxin pathway directs thymic Aire expression. Nat Immunol, 4: 1121–1127.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen, S.B., Dore, R.K., Lane, N.E. et al. (2008). Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum, 58: 1299–1309.

    Article  CAS  PubMed  Google Scholar 

  18. De Togni, P., Goellner, J., Ruddle, N.H. et al. (1994). Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science, 264: 703–707.

    Article  PubMed  Google Scholar 

  19. Dong, C. (2006). Diversification of T-helper-cell lineages: finding the family root of IL-17-producing cells. Nat Rev Immunol, 6: 329–333.

    Article  CAS  PubMed  Google Scholar 

  20. Dougall, W.C., & Chaisson, M. (2006). The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev, 25: 541–549.

    Article  CAS  PubMed  Google Scholar 

  21. Dougall, W.C., Glaccum, M., Charrier, K. et al. (1999). RANK is essential for osteoclast and lymph node development. Genes Dev, 13: 2412–2424.

    Article  CAS  PubMed  Google Scholar 

  22. Ebeling, P.R., Erbas, B., Hopper, J.L. et al. (1998). Bone mineral density and bone turnover in asthmatics treated with long-term inhaled or oral glucocorticoids. J Bone Miner Res, 13: 1283–1289.

    Article  CAS  PubMed  Google Scholar 

  23. Emery, J.G., McDonnell, P., Burke, M.B. et al. (1998). Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem, 273: 14363–14367.

    Article  CAS  PubMed  Google Scholar 

  24. Fata, J.E., Kong, Y.Y., Li, J. et al. (2000). The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell, 103: 41–50.

    Article  CAS  PubMed  Google Scholar 

  25. Feldmann, M., Brennan, F.M., & Maini, R.N. (1996). Rheumatoid arthritis. Cell, 85: 307–310.

    Article  CAS  PubMed  Google Scholar 

  26. Feldmann, M., Brennan, F.M., & Maini, R.N. (1996). Role of cytokines in rheumatoid arthritis. Annu Rev Immunol, 14: 397–440.

    Article  CAS  PubMed  Google Scholar 

  27. Futterer, A., Mink, K., Luz, A. et al. (1998). The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity, 9: 59–70.

    Article  CAS  PubMed  Google Scholar 

  28. Fu, Y.X., Chaplin, D.D. (1999). Development and maturation of secondary lymphoid tissues. Annu Rev Immunol, 17: 399–433.

    Article  CAS  PubMed  Google Scholar 

  29. Green, E.A., Choi, Y., & Flavell, R.A. (2002). Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity, 16: 183–191.

    Article  CAS  PubMed  Google Scholar 

  30. Green, E.A., & Flavell, R.A. (2000). The temporal importance of TNFalpha expression in the development of diabetes. Immunity, 12: 459–469.

    Article  CAS  PubMed  Google Scholar 

  31. Harrington, L.E., Hatton, R.D., Mangan, P.R. et al. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 6: 1123–1132.

    Article  CAS  PubMed  Google Scholar 

  32. Hikosaka, Y., Nitta, T., Ohigashi, I. et al. (2008). The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity, 29: 438–450.

    Article  CAS  PubMed  Google Scholar 

  33. Hofbauer, L.C., Khosla, S., Dunstan, C.R. et al. (1999). Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology, 140: 4367–4370.

    Article  CAS  PubMed  Google Scholar 

  34. Horwood, N.J., Elliott, J., Martin, T.J. et al. (2001). IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol, 166: 4915–4921.

    CAS  PubMed  Google Scholar 

  35. Hsu, H., Lacey, D.L., Dunstan, C.R. et al. (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A, 96: 3540–3545.

    Article  CAS  PubMed  Google Scholar 

  36. Ingulli, E., Mondino, A., Khoruts, A. et al. (1997). In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J Exp Med, 185: 2133–2141

    Article  CAS  PubMed  Google Scholar 

  37. Irla, M., Hugues, S., Gill, J. et al. (2008). Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity, 29: 451–463.

    Article  CAS  PubMed  Google Scholar 

  38. Josien, R., Li, H.L., Ingulli, E. et al. (2000). TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med, 191: 495–502.

    Article  CAS  PubMed  Google Scholar 

  39. Josien, R., Wong, B.R., Li, H.L. et al. (1999). TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol, 162: 2562–2568.

    CAS  PubMed  Google Scholar 

  40. Kanematsu, M., Sato, T., Takai, H., et al. (2000). Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res, 15: 1321–1329.

    Article  CAS  PubMed  Google Scholar 

  41. Keffer, J., Probert, L., Cazlaris, H. et al (1991). Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. Embo J, 10: 4025–4031,

    CAS  PubMed  Google Scholar 

  42. Kim, D., Mebius, R.E., MacMicking, J.D. et al. (2000). Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med, 192: 1467–1478.

    Article  CAS  PubMed  Google Scholar 

  43. Kong, Y.Y., Feige, U., Sarosi, I. et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 42: 304–309.

    Google Scholar 

  44. Kong, Y.Y., Yoshida, H., Sarosi, I. et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 397: 315–323.

    Article  CAS  PubMed  Google Scholar 

  45. Koni, P.A., Sacca, R., Lawton, P. et al. (1997). Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity, 6: 491–500.

    Article  CAS  PubMed  Google Scholar 

  46. Korganow, A.S., Ji, H., Mangialaio, S. et al. (1999). From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity, 10: 451–461.

    Article  CAS  PubMed  Google Scholar 

  47. Kotake, S., Udagawa, N., Hakoda, M. et al. (2001). Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum, 44: 1003–1012.

    Article  CAS  PubMed  Google Scholar 

  48. Kotake, S., Udagawa, N., Takahashi, N. et al. (1999). IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest, 103: 1345–1352.

    Article  CAS  PubMed  Google Scholar 

  49. Kouskoff, V., Korganow, A.S., Duchatelle, V., &et al. (1996). Organ-specific disease provoked by systemic autoimmunity. Cell, 87: 811–822.

    Article  CAS  PubMed  Google Scholar 

  50. Kyewski, B., & Klein, L. (2006). A central role for central tolerance. Annu Rev Immunol, 24: 571–606.

    Article  CAS  PubMed  Google Scholar 

  51. Lacey, D.L., Timms, E., Tan, H.L. et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93: 165–176.

    Article  CAS  PubMed  Google Scholar 

  52. Li, J., Sarosi, I., Yan, X.Q. et al. (2000). RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A, 97: 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  53. Lipton, A. (2006). Future treatment of bone metastases. Clin Cancer Res, 12: 6305s–6308s.

    Article  CAS  PubMed  Google Scholar 

  54. Lipton, A., Steger, G.G., Figueroa, J. et al. (2007). Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol, 25: 4431–4437.

    Article  CAS  PubMed  Google Scholar 

  55. Loser, K., Mehling, A., Loeser, S. et al. (2006). Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med, 12: 1372–1379.

    Article  CAS  PubMed  Google Scholar 

  56. Mahamed, D.A., Marleau, A., Alnaeeli, M. et al. (2005). G(-) anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes, 54: 1477–1486.

    Article  CAS  PubMed  Google Scholar 

  57. Manoury-Schwartz, B., Chiocchia, G., Bessis, N. et al. (1997). High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol, 158: 5501–5506.

    CAS  PubMed  Google Scholar 

  58. Matsumoto, M., Mariathasan, S., Nahm, M.H. et al. (1996). Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science, 271: 1289–1291.

    Article  CAS  PubMed  Google Scholar 

  59. Mebius, R.E. (2003). Organogenesis of lymphoid tissues. Nat Rev Immunol, 3: 292–303.

    Article  CAS  PubMed  Google Scholar 

  60. Mebius, R.E., Rennert, P., & Weissman, I.L. (1997). Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity, 7: 493–504.

    Article  CAS  PubMed  Google Scholar 

  61. Mehling, A., Loser, K., Varga, G. et al. (2001). Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J Exp Med, 194: 615–628.

    Article  CAS  PubMed  Google Scholar 

  62. McClung, M.R., Lewiecki, E.M., Cohen, S.B. et al. (2006). Denosumab in postmenopausal women with low bone mineral density. N Engl J Med, 354: 821–831.

    Article  CAS  PubMed  Google Scholar 

  63. Mori, H., Kitazawa, R., Mizuki, S. et al. (2002). RANK ligand, RANK, and OPG expression in type II collagen-induced arthritis mouse. Histochem Cell Biol, 117: 283–292.

    Article  CAS  PubMed  Google Scholar 

  64. Muller-Ladner, U., Gay, R.E., & Gay, S. (1998). Molecular biology of cartilage and bone destruction. Curr Opin Rheumatol, 10: 212–219.

    Article  CAS  PubMed  Google Scholar 

  65. Nakashima, T., Wada, T., & Penninger, J.M. (2003). RANKL and RANK as novel therapeutic targets for arthritis. Curr Opin Rheumatol, 15: 280–287.

    Article  CAS  PubMed  Google Scholar 

  66. Oliveri, M.B., Mautalen, C.A., Rodriguez Fuchs, C.A. et al. (1991). Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J, 39: 45–48.

    CAS  PubMed  Google Scholar 

  67. Oxenius, A., Campbell, K.A., Maliszewski, C.R. et al. (1996). CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med, 183: 2209–2218.

    Article  CAS  PubMed  Google Scholar 

  68. Oliveri, MB., Mautalen, C.A., Rodriguez Fuchs, C.A. et al. (1991). Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J, 39: 45–48.

    CAS  PubMed  Google Scholar 

  69. Oxenius, A., Campbell, K.A., Maliszewski, C.R. et al. (1996). CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions. J Exp Med, 183: 2209–2218.

    Article  CAS  PubMed  Google Scholar 

  70. Panayi, G.S., Lanchbury, J.S., & Kingsley, G.H. (1992). The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum, 35: 729–735.

    Article  CAS  PubMed  Google Scholar 

  71. Park, H., Li, Z., Yang, X.O. et al. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 6: 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  72. Pettit, A.R., Ji, H., von Stechow, D. et al. (2001). TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol, 159: 1689–1699.

    CAS  PubMed  Google Scholar 

  73. Piepkorn, B., Kann, P., Forst, T. et al. (1997). Bone mineral density and bone metabolism in diabetes mellitus. Horm Metab Res, 29: 584–591.

    Article  CAS  PubMed  Google Scholar 

  74. Quezada, S.A., Jarvinen, L.Z., Lind, E.F. et al. (2004). CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol, 22: 307–328.

    Article  CAS  PubMed  Google Scholar 

  75. Redlich, K., Hayer, S., Maier, A. et al. (2002). Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum, 46: 785–792.

    Article  CAS  PubMed  Google Scholar 

  76. Rennert, P.D., Browning, J.L., & Hochman, P.S. (1997). Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int Immunol, 9: 1627–1639.

    Article  CAS  PubMed  Google Scholar 

  77. Rennert, P.D., James, D., Mackay, F. et al. (1998). Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity, 9: 71–79.

    Article  CAS  PubMed  Google Scholar 

  78. Romas, E., Sims, N.A., Hards, D.K. et al. (2002). Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol, 161: 1419–1427.

    CAS  PubMed  Google Scholar 

  79. Rossi, S.W., Jenkinson, W.E., Anderson, G. et al. (2006). Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature, 441: 988–991.

    Article  CAS  PubMed  Google Scholar 

  80. Rossi, S.W., Kim, M.Y., Leibbrandt, A. et al. (2007). RANK signals from CD4(+)3(-) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med, 204: 1267–1272.

    Article  CAS  PubMed  Google Scholar 

  81. Roy, M., Waldschmidt, T., Aruffo, A. et al. (1993). The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol, 151: 2497–2510.

    CAS  PubMed  Google Scholar 

  82. Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol, 6: 345–352.

    Article  CAS  PubMed  Google Scholar 

  83. Sato, K., Suematsu, A., Okamoto, K. et al. (2006). Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med, 203: 2673–2682.

    Article  CAS  PubMed  Google Scholar 

  84. Seitz, M., & Hunstein, W. (1985). Enhanced prostanoid release from monocytes of patients with rheumatoid arthritis and active systemic lupus erythematosus. Ann Rheum Dis, 44: 438–445.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef M. Penninger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Leibbrandt, A., Penninger, J.M. (2009). Novel Functions of RANK(L) Signaling in the Immune System. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 658. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1050-9_9

Download citation

Publish with us

Policies and ethics