Skip to main content

In Silico Approaches to Predict DDIs

  • Chapter
  • First Online:
Enzyme- and Transporter-Based Drug-Drug Interactions

Abstract

This chapter will briefly describe in silico methodologies for the prediction of drug–drug interactions (DDIs) and highlight the broad application of computational tools to study DDIs. This chapter outlines the main methodologies currently applied including QSAR modeling, pharmacophore modeling, docking, and the combination of in silico and experimental approaches. There is an emphasis on cytochrome P450 and how in silico models are used in current drug discovery efforts to reduce the risk of DDIs. The discussion of the limitations associated with the various approaches as well as future aspects of DDI modeling and simulation can give researchers helpful guidance to this useful and growing area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzelius L, Zamora I, Masimirembwa CM, Karlen A, Andersson TB, Mecucci S, Baroni M and Cruciani G (2004) Conformer- and alignment-independent model for predicting structurally diverse competitive CYP2C9 inhibitors. J Med Chem 47:907–914.

    Article  CAS  PubMed  Google Scholar 

  • Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, Norinder U, Bergstroem CAS and Artursson P (2008) Structural requirements for drug inhibition of the liver specific human organic cation transport protein. J Med Chem 51:5932–5942.

    Article  CAS  PubMed  Google Scholar 

  • Ahlstrom MM, Ridderstrom M and Zamora I (2007) CYP2C9 structure-metabolism relationships: substrates, inhibitors, and metabolites. J Med Chem 50:5382–5391.

    Article  PubMed  Google Scholar 

  • Arimoto R, Prasad MA and Gifford EM (2005) Development of CYP3A4 inhibition models: comparisons of machine-learning techniques and molecular descriptors. J Biomol Screening 10:197–205.

    Article  CAS  Google Scholar 

  • Bathelt CM, Mulholland AJ and Harvey JN (2008) QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J Phys Chem A 112:13149–13156.

    Article  CAS  PubMed  Google Scholar 

  • Bell L, Bickford S, Nguyen PH, Wang J, He T, Zhang B, Friche Y, Zimmerlin A, Urban L and Bojanic D (2008) Evaluation of fluorescence- and mass spectrometry-based CYP inhibition assays for use in drug discovery. J Biomol Screening 13:343–353.

    Article  CAS  Google Scholar 

  • Bravi G, Gancia E, Mascagni P, Pegna M, Todeschini R and Zaliani A (1997) MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: a comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Des 11:79–92.

    Article  CAS  PubMed  Google Scholar 

  • Bravi G and Wikel JH (2000) Application of MS-WHIM descriptors: 1. Introduction of new molecular surface properties and 2. Prediction of binding affinity data. Quant Struct Act Relat 19:29–38.

    Article  CAS  Google Scholar 

  • Burton J, Ijjaali I, Barberan O, Petitet F, Vercauteren DP and Michel A (2006) Recursive partitioning for the prediction of cytochromes P450 2D6 and 1A2 inhibition: importance of the quality of the dataset. J Med Chem 49:6231–6240.

    Article  CAS  PubMed  Google Scholar 

  • Byvatov E, Baringhaus K-H, Schneider G and Matter H (2007) A virtual screening filter for identification of cytochrome P450 2C9 (CYP2C9) inhibitors. QSAR Comb Sci 26:618–628.

    Article  CAS  Google Scholar 

  • Chang C-eA, Chen W and Gilson MK (2007) Ligand configurational entropy and protein binding. Proc Natl Acad Sci USA 104:1534–1539.

    Article  PubMed  Google Scholar 

  • Chohan KK, Paine SW, Mistry J, Barton P and Davis AM (2005) A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. J Med Chem 48:5154–5161.

    Article  CAS  PubMed  Google Scholar 

  • de Graaf C, Oostenbrink C, Keizers PHJ, van der Wijst T, Jongejan A and Vermeulen NPE (2006) Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. J Med Chem 49:2417–2430.

    Article  PubMed  Google Scholar 

  • de Graaf C, Vermeulen NPE and Feenstra KA (2005) Cytochrome P450 in silico: an integrative modeling approach. J Med Chem 48:2725–2755.

    Article  PubMed  Google Scholar 

  • de Groot M (2006) Designing better drugs: predicting cytochrome P450 metabolism. Drug Discov Today 11:601–606.

    Article  PubMed  Google Scholar 

  • de Groot MJ, Alex AA and Jones BC (2002) Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J Med Chem 45:1983–1993.

    Article  PubMed  Google Scholar 

  • de Groot M, Lewis DFV and Modi S (2007) Molecular modeling and quantitative structure-activity relationship of substrates and inhibitors of drug metabolism enzymes, in pp 809–825, Elsevier.

    Google Scholar 

  • Doweyko AM, John BT and David JT (2007) Three-dimensional quantitative structure-activity relationship: the state of the art, in Comprehensive Medicinal Chemistry II pp 575–595, Elsevier, Oxford.

    Chapter  Google Scholar 

  • Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH and Wrighton SA (1999) Three and four dimensional-quantitative structure activity relationship analyses of CYP3A4 inhibitors. J Pharm Exp Ther 290:429–438.

    CAS  Google Scholar 

  • Ekins S, Bravi G, Binkley S, Gillespie JS, Ring BJ, Wikel JH and Wrighton SA (2000a) Three- and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab Dispos 28:994–1002.

    CAS  PubMed  Google Scholar 

  • Ekins S, Mestres J and Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 152:21–37.

    Article  CAS  PubMed  Google Scholar 

  • Ekins S, Ring BJ, Bravi G, Wikel JH and Wrighton SA (2000b) Predicting drug-drug interactions in silico using pharmacophores: a paradigm for the next millennium, in Pharmacophore perception, development, and use in drug design (Guner OF ed) pp 269–299, IUL, San Diego.

    Google Scholar 

  • Ekins S, Ring BJ, Grace J, McRobie-Belle DJ and Wrighton SA (2000c) Present and future in vitro approaches for drug metabolism. J Pharm Tox Methods 44:313–324.

    Article  CAS  Google Scholar 

  • Ekins S, Stresser DM and Williams JA (2003) In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci 24:191–196.

    Article  Google Scholar 

  • Ekins S and Swaan PW (2004) Development of computational models for enzymes, transporters, channels and receptors relevant to ADME/TOX. Rev Comp Chem 20:333–415.

    Article  CAS  Google Scholar 

  • Ekroos M and Sjogren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103:13682–13687.

    Article  CAS  PubMed  Google Scholar 

  • Fenner KS, Troutman MD, Kempshall S, Cook JA, Ware JA, Smith DA and Lee CA (2009) Drug-drug interactions mediated through p-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther (NY, NY, US) 85:173–181.

    Article  CAS  Google Scholar 

  • Ferguson AM, Heritage T, Jonathon P, Pack SE, Phillips L, Rogan J and Snaith PJ (1997) EVA: a new theoretically based molecular descriptor for use in QSAR/QSPR analysis. J Comput Aided Mol Des 11:143–152.

    Article  CAS  PubMed  Google Scholar 

  • Fox T and Kriegl JM (2007) Linear quantitative structure-activity relationships for the interaction of small molecules with human cytochrome P450 isoenzymes. Annu Rep Comput Chem 3:63–81.

    Article  CAS  Google Scholar 

  • Fuhr U, Strobl G, Manaut F, Anders EM, Soergel F, Lopez-de-Binas E, Chu DTW, Pernet AG, Mahr G and et al. (1993) Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol 43:191–199.

    CAS  PubMed  Google Scholar 

  • Gleeson MP, Davis AM, Chohan KK, Paine SW, Boyer S, Gavaghan CL, Arnby CH, Kankkonen C and Albertson N (2007) Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models. J Comput Aided Mol Des 21:559–573.

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS, Morris GM and Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Gottesman M (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev 2:48–58.

    CAS  Google Scholar 

  • Grime KH, Bird J, Ferguson D and Riley RJ (2009) Mechanism-based inhibition of cytochrome P450 enzymes: an evaluation of early decision making in vitro approaches and drug-drug interaction prediction methods. Eur J Pharm Sci 36:175–191.

    Article  CAS  PubMed  Google Scholar 

  • Hagenbuch B and Meier PJ (2003) The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta Biomembr 1609:1–18.

    Article  CAS  Google Scholar 

  • Helguera AM, Combes RD, Gonzalez MP and Cordeiro MNDS (2008) Applications of 2D descriptors in drug design: a DRAGON tale. Curr Top Med Chem (Sharjah, UAE) 8:1628–1655.

    Article  CAS  Google Scholar 

  • Hritz J, de Ruiter A and Oostenbrink C (2008) Impact of plasticity and flexibility on docking results for cytochrome P450 2D6: a combined approach of molecular dynamics and ligand docking. J Med Chem 51:7469–7477.

    Article  CAS  PubMed  Google Scholar 

  • Hudelson MG, Ketkar NS, Holder LB, Carlson TJ, Peng C-C, Waldher BJ and Jones JP (2008) High confidence predictions of drug-drug interactions: predicting affinities for cytochrome P450 2C9 with multiple computational methods. J Med Chem 51:648–654.

    Article  CAS  PubMed  Google Scholar 

  • Hyland R OR, Stoner C, West M, Wester MR, Youdim K, Zientek M (2009) Drug-drug interactions: Screening for liability and assessment of risk, in Hit and Lead Profiling (Urban L, Faller B. eds), Wiley-VCH, Weinheim.

    Google Scholar 

  • Jefcoate CR (1978) Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol 52:258–279.

    Article  CAS  PubMed  Google Scholar 

  • Jensen BF, Vind C, Padkjr SB, Brockhoff PB and Refsgaard HHF (2007) In Silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors. J Med Chem 50:501–511.

    Article  CAS  PubMed  Google Scholar 

  • Jones DR, Ekins S, Li L and Hall SD (2007) Computational approaches that predict metabolic intermediate complex formation with CYP3A4 (+b5). Drug Metab Dispos 35:1466–1475.

    Article  CAS  PubMed  Google Scholar 

  • Kang P, Liao M, Wester MR, Leeder JS, Pearce RE and Correia MA (2008) CYP3A4-mediated carbamazepine (CBZ) metabolism: formation of a covalent CBZ-CYP3A4 adduct and alteration of the enzyme kinetic profile. Drug Metab Dispos 36:490–499.

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Krasowski MD, Reschly EJ, Sinz MW, Swaan PW and Ekins S (2008) Machine learning methods and docking for predicting human pregnane X receptor activation. Chem Res Toxicol 21:1457–1467.

    Article  CAS  PubMed  Google Scholar 

  • Kier LB (1971) Molecular Orbital Theory in Drug Research. (Medicinal Chemistry, Vol. 10), Academic Press, New York.

    Google Scholar 

  • Kirton SB, Murray CW, Verdonk ML and Taylor RD (2005) Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Proteins: Struct Funct Bioinf 58:836–844.

    Article  CAS  Google Scholar 

  • Kontijevskis A, Komorowski J and Wikberg JES (2008) Generalized proteochemometric model of multiple cytochrome P450 enzymes and their inhibitors. J Chem Inf Model 48:1840–1850.

    Article  CAS  PubMed  Google Scholar 

  • Kriegl JM, Arnhold T, Beck B and Fox T (2005a) A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 19:189–201.

    Article  CAS  PubMed  Google Scholar 

  • Kriegl JM, Eriksson L, Arnhold T, Beck B, Johansson E and Fox T (2005b) Multivariate modeling of cytochrome P450 3A4 inhibition. Eur J Pharm Sci 24:451–463.

    Article  CAS  PubMed  Google Scholar 

  • Labute P (2000) A widely applicable set of descriptors. J Mol Graphics Modell 18:464–477.

    Article  CAS  Google Scholar 

  • Lau YY, Huang Y, Frassetto L and Benet LZ (2007) Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther (NY, NY, US) 81:194–204.

    Article  CAS  Google Scholar 

  • Lemaire G, Benod C, Nahoum V, Pillon A, Boussioux A-M, Guichou J-F, Subra G, Pascussi J-M, Bourguet W, Chavanieu A and Balaguer P (2007) Discovery of a highly active ligand of human pregnane X receptor: a case study from pharmacophore modeling and virtual screening to “in vivo” biological activity. Mol Pharmacol 72:572–581.

    Article  CAS  PubMed  Google Scholar 

  • Lewis DFV, Lake BG and Dickins M (2006a) Quantitative structure-activity relationships (QSARs) in CYP3A4 inhibitors: the importance of lipophilic character and hydrogen bonding. J Enzyme Inhib Med Chem 21:127–132.

    Article  CAS  PubMed  Google Scholar 

  • Lewis DFV, Lake BG and Dickins M (2007) Quantitative structure-activity relationships (QSARs) in inhibitors of various cytochromes P450: the importance of compound lipophilicity. J Enzyme Inhib Med Chem 22:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Lewis DFV, Lake BG, Ito Y and Anzenbacher P (2006b) Quantitative structure-activity relationships (QSARs) within cytochromes P450 2B (CYP2B) subfamily enzymes: the importance of lipophilicity for binding and metabolism. Drug Metab Drug Interact 21:213–231.

    Google Scholar 

  • Li H, Sun J, Fan X, Sui X, Zhang L, Wang Y and He Z (2008) Considerations and recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction. J Comput Aided Mol Des 22:843–855.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yap CW, Ung CY, Xue Y, Li ZR, Han LY, Lin HH and Chen YZ (2007) Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins. J Pharm Sci 96:2838–2860.

    Article  CAS  PubMed  Google Scholar 

  • Lightning LK, Jones JP, Friedberg T, Pritchard MP, Shou M, Rushmore TH, Trager WF (2000) Mechanism-based inactivation of cytochrome P450 3A4 by L-754,394. Biochemistry 39:4276–4287.

    Article  CAS  PubMed  Google Scholar 

  • Lin JH (2007) Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol 3:81–92.

    Article  CAS  PubMed  Google Scholar 

  • Locuson CW, Gannett PM, Ayscue R and Tracy TS (2007) Use of simple docking methods to screen a virtual library for heteroactivators of cytochrome P450 2C9. J Med Chem 50:1158–1165.

    Article  CAS  PubMed  Google Scholar 

  • Masimirembwa CM, Ridderstrom M, Zamora I and Andersson TB (2002) Combining pharmacophore and protein modeling to predict CYP450 inhibitors and substrates. Methods Enzymol 357:133–144.

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R and Olson AJ (2008) Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics, Chapter 8:Unit 8.14.

    Google Scholar 

  • Neves MA, Dinis TC, Colombo G and Sa e Melo ML (2007) Combining computational and biochemical studies for a rationale on the anti-aromatase activity of natural polyphenols. Chem Med Chem 2:1750–1762.

    CAS  PubMed  Google Scholar 

  • O‘Brien SE and De Groot MJ (2005) Greater than the sum of its parts: combining models for useful ADMET prediction. J Med Chem 48:1287–1291.

    Article  PubMed  Google Scholar 

  • Pastor M, Cruciani G, McLay I, Pickett S and Clementi S (2000) GRid-INdependent Descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J Med Chem 43:3233–3243.

    Article  CAS  PubMed  Google Scholar 

  • Peng C-C, Cape JL, Rushmore T, Crouch GJ and Jones JP (2008) Cytochrome P450 2C9 type II binding studies on quinoline-4-carboxamide analogues. J Med Chem 51:8000–8011.

    Article  CAS  PubMed  Google Scholar 

  • Porubsky PR, Meneely KM and Scott EE (2008) Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 283:33698–33707.

    Article  CAS  PubMed  Google Scholar 

  • Refsgaard HHF, Jensen BF, Christensen IT, Hagen N and Brockhoff PB (2006) In silico prediction of cytochrome P450 inhibitors. Drug Dev Res 67:417–429.

    Article  CAS  Google Scholar 

  • Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ and Bridges AM (2006) Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622.

    Article  CAS  PubMed  Google Scholar 

  • Sangamwar AT, Labhsetwar LB and Kuberkar SV (2008) Exploring CYP1A1 as anticancer target: homology modeling and in silico inhibitor design. J Mol Model 14:1101–1109.

    Article  CAS  PubMed  Google Scholar 

  • Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD and Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355.

    Article  CAS  PubMed  Google Scholar 

  • Schuster D, Laggner C, Steindl TM, Palusczak A, Hartmann RW and Langer T (2006) Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. J Chem Inf Model 46:1301–1311.

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Cucurull-Sanchez L, John BT and David JT (2007) The adaptive in combo strategy, in Comprehensive Medicinal Chemistry II pp 957–969, Elsevier, Oxford.

    Chapter  Google Scholar 

  • Srivastava AK, Jaiswal M, Archana and Chaurasia S (2008) QSAR of substituted N-benzyl piperidines in the GBR series. J Indian Chem Soc 85:842–848.

    CAS  Google Scholar 

  • Stjernschantz E, Vermeulen NPE and Oostenbrink C (2008) Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert Opin Drug Metab Toxicol 4:513–527.

    Article  CAS  PubMed  Google Scholar 

  • Stoner CL, Gifford E, Stankovic C, Lepsy CS, Brodfuehrer J, Prasad JVNV and Surendran N (2004) Implementation of an ADME enabling selection and visualization tool for drug discovery. J Pharm Sci 93:1131–1141.

    Article  CAS  PubMed  Google Scholar 

  • Terfloth L, Bienfait B and Gasteiger J (2007) Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 47:1688–1701.

    Article  CAS  PubMed  Google Scholar 

  • Ung CY, Li H, Yap CW and Chen YZ (2007) In silico prediction of pregnane X receptor activators by machine learning approaches. Mol Pharmacol 71:158–168.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Y and Wang B (2007) An in silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares. Int J Mol Sci 8:166–179.

    Article  CAS  Google Scholar 

  • Wang Y-H, Li Y, Yang S-L and Yang L (2005) An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian-regularized neural network. J Comput Aided Mol Des 19:137–147.

    Article  CAS  PubMed  Google Scholar 

  • Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD and Johnson EF (2004) The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 279:35630–35637.

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ and Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686.

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D and Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.

    Article  CAS  PubMed  Google Scholar 

  • Winiwarter S and Hilgendorf C (2008) Modeling of drug-transporter interactions using structural information. Curr Opin Drug Discov Devel 11:95–103.

    CAS  PubMed  Google Scholar 

  • Wishart DS (2007) Improving early drug discovery through ADME modelling: an overview. Drugs R&D 8:349–362.

    Article  CAS  Google Scholar 

  • Yano JK, Denton TT, Cerny MA, Zhang X, Johnson EF and Cashman JR (2006) Synthetic inhibitors of cytochrome P-450 2A6: inhibitory activity, difference spectra, mechanism of inhibition, and protein cocrystallization. J Med Chem 49:6987–7001.

    Article  CAS  PubMed  Google Scholar 

  • Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD and Johnson EF (2004) The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem 279:38091–38094.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Ranade A, Venkataramanan R, Strom S, Chupka J, Ekins S, Schuetz E and Bachmann K (2008) A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos 36:1689–1697.

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Zayed A, Dickins M, Phipps A, Griffiths M, Darekar A, Hyland R, Fahmi O, Hurst S, Plowchalk DR, Cook J, Guo F and Obach RS (2008) Application of CYP3A4 in vitro data to predict clinical drug–drug interactions; predictions of compounds as objects of interaction. Br J Clin Pharmacol 65:680–692.

    Article  CAS  PubMed  Google Scholar 

  • Zhang EY, Phelps MA, Cheng C, Ekins S and Swaan PW (2002) Modeling of active transport systems. Adv Drug Delivery Rev 54:329–354.

    Article  CAS  Google Scholar 

  • Zhou D, Liu R, Otmani SA, Grimm SW, Zauhar RJ and Zamora I (2007) Rapid classification of CYP3A4 inhibition potential using support vector machine approach. Lett Drug Des Discov 4:192–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad L. Stoner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stoner, C.L., Wester, M.R., Burke, B.J. (2010). In Silico Approaches to Predict DDIs. In: Pang , K., Rodrigues, A., Peter, R. (eds) Enzyme- and Transporter-Based Drug-Drug Interactions. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0840-7_6

Download citation

Publish with us

Policies and ethics