Skip to main content

Optical Imaging of Short–Term Working Memory in Prefrontal Cortex of the Macaque Monkey

  • Chapter
  • First Online:
  • 928 Accesses

Abstract

Prefrontal cortex is an area critical for cognitive functions such as planning, decision-making, and reasoning. Working memory is a key aspect to the execution of these functions and has been strongly associated with prefrontal function. This chapter reviews the functional organization of a prefrontal area, area 46, that has been associated with working memory in monkeys. Anatomical and optical imaging studies indicate the presence of a clustered organization within area 46, similar in nature to clustered organizations found in sensory cortical areas. Although the relationship of these clusters to working memory function is unknown, optical imaging studies suggest a spatial organization for mnemonic function. This ‘spatial memory map’ is topographically consistent with electrophysiologically established maps for visual and eye movement response. Interestingly, in trials in which response suppression is required, optical imaging reveals a possible suppressive signal; lack of this signal may underly the perseveration seen in diseases such as schizophrenia. In sum, I suggest that clustered organization in prefrontal cortex provides a scaffold upon which visual, mnemonic, and motor response are organized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54:714–734

    CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: II Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287(4):422–445

    Article  CAS  PubMed  Google Scholar 

  • Chen LM, Friedman RM, Roe AW (2005) Optical imaging of SI topography in anesthetized and awake squirrel monkey. J Neurosci 25:7648–7659

    Article  CAS  PubMed  Google Scholar 

  • Devor A, Dunn AK, Andermann ML, Ulbert I, Boas DA, Dale AM (2003) Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron 39:353–359

    Article  CAS  PubMed  Google Scholar 

  • Dragoi V, Sur M (2000) Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. J Neurophysiol 83:1019–1030

    CAS  PubMed  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1994) Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J Neurosci 14:2775–2788

    CAS  PubMed  Google Scholar 

  • Funihashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    Google Scholar 

  • Fuster JM (1997) The prefrontal cortex. Lippincott-Raven, Philadelphia, PA

    Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8(8):2928–2937

    CAS  PubMed  Google Scholar 

  • Ghose GM, Ts’o DY (1997) Form processing modules in primate area V4. J Neurophysiol 77(4):2191–2196

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Mountcastle VB (ed) Higher functions of the brain. Part 1, Handbook of physiology. Section I: The nervous system, vol 5. American Physiological Society, Bethesda, MD, pp 374–417

    Google Scholar 

  • Goldman-Rakic PS (1999) The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46(5):650–661

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Schwartz ML (1982) Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216(4547):755–757

    Article  CAS  PubMed  Google Scholar 

  • Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364

    Article  CAS  PubMed  Google Scholar 

  • Grinvald A, Frostig RD, Siegel RM, Bartfeld E (1991) High-resolution optical imaging of functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A 88(24):11559–11563

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Ollinger JM, Shulman GL, Cloninger CR, Price JL, Van Essen DC, Raichle ME (2003) Persistence and brain circuitry. Proc Natl Acad Sci U S A 100(6):3479–3484

    Article  CAS  PubMed  Google Scholar 

  • Hirata Y, Sawaguchi T (2008) Functional columns in the primate prefrontal cortex revealed by optical imaging in vitro. Neurosci Res 61:1–10

    Article  PubMed  Google Scholar 

  • Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119

    Article  PubMed  Google Scholar 

  • Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20:8504–8514

    CAS  PubMed  Google Scholar 

  • Kojima T, Onoe H, Hikosaka K, Tsutsui K, Tsukada H, Watanabe M (2007) Domain-related differentiation of working memory in the Japanese macaque (Macaca fuscata) frontal cortex: a positron emission tomography study. Eur J NeuroSci 25:2523–2535

    Article  CAS  PubMed  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    Article  CAS  PubMed  Google Scholar 

  • Lund JS, Yoshioka T, Levitt JB (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex 3(2):148–162

    Article  CAS  PubMed  Google Scholar 

  • McCarthy G, Puce A, Constable RT, Krystal HJ, Gore JC, Goldman-Rakic P (1996) Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 6:600–611

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1994) Frontal lobes and working memory: evidence from invesitgation of the effects of cortical excisions in nonhuman primates. In: Boller F, Spinnier H, Hendler JA (eds) Handbook of neuropsychology, vol 9. Amsterdam, Elsevier, pp 59–82

    Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J NeuroSci 11(3):1011–1036

    Article  CAS  PubMed  Google Scholar 

  • Raffi M, Siegel RM (2005) Functional architecture of spatial attention in the parietal cortex of the behaving monkey. J Neurosci 25(21):5171–5186

    Article  CAS  PubMed  Google Scholar 

  • Rainer G, Asaad WF, Miller EK (1998) Memory fields of neurons in the primate prefrontal cortex. Proc Natl Acad Sci U S A 95(25):15008–15013

    Article  CAS  PubMed  Google Scholar 

  • Ramsden BM, Hung CP, Roe AW (2001) Real and illusory contour processing in Area V1 of the primate – a cortical balancing act. Cereb Cortex 11:648–665

    Article  CAS  PubMed  Google Scholar 

  • Roe AW (2003) Modular complexity of Area V2 in the Macaque monkey. In: Collins C, Kaas J (eds) The primate visual system. CRC Press, New York, pp 109–138

    Google Scholar 

  • Roe AW (2008) Optical imaging of visual feature representation in the awake, fixating monkey. In: Wang R, Gu F, Shen E (eds) Advances in cognitive neurodynamics ICCN 2007: proceedings of the International Conference on Cognitive Neurodynamics 2007. Springer, New York. ISBN: 978-1-4020-8386-0

    Google Scholar 

  • Roe AW, Ts’o DY (1995) Visual topography in primate V2: multiple representation across functional stripes. J Neurosci 15:3689–3715

    CAS  PubMed  Google Scholar 

  • Roe AW, Ts’o DY (1999) Specificity of color connectivity between primate V1 and V2. J Neurophysiol 82:2719–2731

    CAS  PubMed  Google Scholar 

  • Roe AW, Walled D, Sybirska E, Goldman-Rakic PS (2004) Optical imaging of prefrontal cortex during oculomotor delay response task in Macaque monkey. Soc Neurosci Abstract, San Diego, CA

    Google Scholar 

  • Sawaguchi T (1994) Modular activation and suppression of neocortical activity in the monkey revealed by optical imaging. NeuroReport 6:185–189

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T (1996) Functional modular organization of the primate prefrontal cortex for representing working memory process. Brain Res Cogn Brain Res 5(1–2):157–163

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251(4996):947–950

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71(2):515–528

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1988) Delayed response deficit in monkeys by locally disturbed prefrontal neuronal activity by bicuculline. Behav Brain Res 31(2):193–198

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1989) Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys. Exp Brain Res 75(3):457–469

    Article  CAS  PubMed  Google Scholar 

  • Schwartz TH, Bonhoeffer T (2001) In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nat Med 9:1063–1067

    Article  Google Scholar 

  • Seidemann E, Arieli A, Grinvald A, Slovin H (2002) Dynamics of depolarization and hyperpolarization in the frontal cortex and saccade goal. Science 295(5556):862–865

    Article  CAS  PubMed  Google Scholar 

  • Siegel RM, Raffi M, Phinney RE, Turner JA, Jando G (2003) Functional architecture of eye position gain fields in visual association cortex of behaving monkey. J Neurophysiol 90:1279–1294

    Article  PubMed  Google Scholar 

  • Suzuki and Azuma (1983) Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp Brain Res 53:47–58

    Google Scholar 

  • Swindale NV (2004) How different feature spaces may be represented in cortical maps. Network 15(4):217–242

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Funihashi S (2004) Population vector analysis of primate prefrontal activity during spatial working memory. Cereb Cortex 14(12):1328–1339

    Article  PubMed  Google Scholar 

  • Tanigawa H, Lu HD, Chen G, Roe AW (2008) Functional subdivisions in macaque V4 revealed by optical imaging in the behaving Macaque monkey. Vision Sciences Society, Naples, FL

    Google Scholar 

  • Thompson JK, Peterson MR, Freeman RD (2003) Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299:1070–1072

    Article  CAS  PubMed  Google Scholar 

  • Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249:417–420

    Article  PubMed  Google Scholar 

  • Tsunoda K, Yamane Y, Nishizaki M, Tanifuji M (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4:832–838

    Article  CAS  PubMed  Google Scholar 

  • Vanzetta I, Slovin H, Omer DB, Grinvald A (2004) Columnar resolution of blood volume and oximetry functional maps in the behaving monkey; implications for FMRI. Neuron 42:843–854

    Article  CAS  PubMed  Google Scholar 

  • Vnek N, Ramsden B, Hung C, Goldman-Rakic PS, Roe AW (1999) Optical imaging of functional domains in the cortex of the awake and behaving primate. Proc Natl Acad Sci U S A 96:4057–4060

    Article  CAS  PubMed  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

Download references

Acknowledgment

This chapter is written in memory of Dr. Patricia Goldman-Rakic. Much of the optical imaging work described here was conducted in collaboration with Dr. Goldman-Rakic at Department of Neurobiology at Yale University School of Medicine, New Haven CT. Dr. Goldman-Rakic was a pioneer in prefrontal function and encouraged me to explore and extend ideas regarding functional organization to prefrontal areas. I am grateful to have had her support and mentorship. Others who contributed to this work were E Sybirska and Douglas Walled. Supported by Packard Foundation, NIMH P50MH068789, NEI EY11744, NIDA DA023002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna W. Roe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roe, A.W. (2009). Optical Imaging of Short–Term Working Memory in Prefrontal Cortex of the Macaque Monkey. In: Roe, A. (eds) Imaging the Brain with Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0452-2_6

Download citation

Publish with us

Policies and ethics