Skip to main content

Dynamic Characterization of Soft Materials

  • Chapter
  • First Online:
Book cover Dynamic Failure of Materials and Structures

Abstract

Soft materials, such as elastomers, foams, gels, and biological tissues, possess low stiffness, yield strength, and wave speeds. These characteristics pose challenges in experiment design to obtain the dynamic properties of soft materials at high rates of loading. The low wave speeds delay the stress equilibrium in the specimen. Low strength and stiffness require highly sensitive load detection system. Low strength also makes inertia effects significant. This chapter illustrates these challenges as they are encountered in high-rate experiments using Kolsky bars. Experimental solutions designed to overcome these difficulties are then introduced and demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon C (1998) An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar. Exp Mech 38:242–249

    Article  Google Scholar 

  • Bragov AM, Lomunov AK (1995) Methodological aspects of studying dynamic material properties using the Kolsky method. Int J Impact Eng 16:321–330

    Article  Google Scholar 

  • Chen W, Lu F (2000) A technique for dynamic proportional multiaxial compression on soft materials. Exp Mech 40:226–230

    Article  Google Scholar 

  • Chen W, Song B (2005) Dynamic compression testing on polymeric foams. In: Experiments in Automotive Engineering – Optical Techniques, 2005 SAE World Congress, April 11–14, 2005, Detroit, Michigan

    Google Scholar 

  • Chen W, Zhou B (1998) Constitutive behavior of Epon 828/T-403 at various strain rates. Mech Time-Depend Mater 2:103–111

    Article  Google Scholar 

  • Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39:81–85

    Article  Google Scholar 

  • Chen W, Lu F, Cheng M (2000a) Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym Test 21:113–121

    Article  Google Scholar 

  • Chen W, Lu F, Zhou B (2000b) A quartz-crystal-embedded split Hopkinson pressure bar for soft materials. Exp Mech 40:1–6

    Article  MATH  Google Scholar 

  • Chen W, Lu F, Frew DJ, Forrestal MJ (2002) Dynamic compression testing of soft materials. ASME Trans J Appl Mech 69:214–223

    Article  MATH  Google Scholar 

  • Chen W, Song B, Frew DJ, Forrestal MJ (2003) Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar. Exp Mech 43:20–23

    Article  Google Scholar 

  • Chen WW, Song B (2006) Temperature dependence of a NiTi shape meomory alloy’s superelastic behavior at high strain rates. J Mech Mater Struct 1:339–356

    Article  MathSciNet  Google Scholar 

  • Chen WW, Wu Q, Kang JH, Winfree NA (2001) Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0. 001–750 s − 1. Int J Solids Struct 38:8989–8998

    Article  Google Scholar 

  • Clamroth R (1981) Determination of viscoelastic properties by dynamic testing. Polym Test, 2:263–286

    Article  Google Scholar 

  • Casem D, Weerasooriya T, Moy P (2003) Acceleration compensation of quartz transducers embedded in a split Hopkinson pressure bar. In: Proceedings of the 2003 SEM annual conference and exposition on experimental and applied mechanics, June 2–4, 2003, Charlotte, North Carolina

    Google Scholar 

  • Casem D, Weerasooriya T, Moy P (2005) Inertial effects of quartz force transducers embedded in a split Hopkinson pressure bar. Exp Mech 45:368–376

    Article  Google Scholar 

  • Casem DT, Fourney WL, Chang P (2003) A polymeric split Hopkinson pressure bar instrumented with velocity gages. Exp Mech 43:420–427

    Article  Google Scholar 

  • Christensen RJ, Swanson SR, Brown WS (1972) Split-Hopkinson-bar tests on rocks under confining pressure. Exp Mech November 508–513

    Google Scholar 

  • Davis EDH, Hunter SC (1963) The dynamic compression test of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11:155–179

    Article  Google Scholar 

  • Dioh NN, Leevers PS, Williams JG (1993) Thickness effects in split Hopkinson pressure bar tests. Polymer 34:4230–4234

    Article  Google Scholar 

  • Duffy J, Campbell JD, Hawley RH (1971) On the use of a torsional split Hopkinson bar to study rate effects in 1100–0 aluminum. ASME Trans J Appl Mech 37:83–91

    Article  Google Scholar 

  • Ellwood S, Griffiths LJ, Parry DJ (1982) Materials testing at high constant strain rates. J Phys E: Sci Instrum 15:280–282

    Article  Google Scholar 

  • Forrestal MJ, Wright TW, Chen W (2006) The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test. Int J Impact Eng 34:405–411

    Article  Google Scholar 

  • Frantz CE, Follansbee PS, Wright WT (1984) Experimental techniques with the split Hopkinson pressure bar. In: Berman I, Schroeder JW (eds) High energy rate fabrication, Proceedings of the 8th international conference on high energy rate fabrication, pp 229–236, San Antonio, Texas

    Google Scholar 

  • Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials. Exp Mech 41:40–46

    Article  Google Scholar 

  • Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106

    Article  Google Scholar 

  • Frew DJ, Forrestal MJ, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar. Exp Mech 45:186–195

    Article  Google Scholar 

  • Gorham DA (1989) Specimen inertia in high strain-rate compression. J Phys D: Appl Phys 22:1888–1893

    Article  Google Scholar 

  • Gray GT (2000) Classic split-Hopkinson pressure bar testing. In: Mechanical testing and evaluation, ASM metals handbook, American Society for Metals, Ohio

    Google Scholar 

  • Gray GT, Blumenthal WR (2000) Split Hopkinson pressure bar testing of soft materials. In: Mechanical testing and evaluation, ASM metals handbook, 8:488–496, American Society for Metals, Ohio

    Google Scholar 

  • Gray GT, Blumenthal WR, Trujillo CP, Carpenter RW (1997) Influence of temperature and strain rate on the mechanical behavior of Adiprene L-100. J Phys IV France Colloque C3 (DYMAT 97) 7:523–528

    Google Scholar 

  • Harris JA (1987) Dynamic testing under nonsinusoidal conditions and the consequences of nonlinearity for service performance. Rubber Chem Tech 60:870–887

    Google Scholar 

  • Karnes CH, Ripperger EA (1966) Strain rate effects in cold worked high-purity aluminum. J Mech Phys Solids 14:75–88

    Article  Google Scholar 

  • King AI (2000) Fundamentals of impact biomechanics: part I – biomechanics of the head, neck, and thorax. Annu Rev Biomed Eng 2:55–81

    Article  Google Scholar 

  • Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Lond B62:676–700

    Google Scholar 

  • Kriven WM, Rosczyk BR, Kremeyer K, Song B, Chen W (2003) Transformation toughening of a calcium zirconate matrix by dicalcium silicate under ballistic impact. In: Kriven WM, Lin HT (eds) 27th international Cocoa Beach conference on advanced ceramics and composites: A, ceramic engineering and science proceedings, 24:383–388

    Google Scholar 

  • Liu Q, Subhash G (2006) Characterization of viscoelastic properties of polymer bar using iterative deconvolution in the time domain. Mech Mater 38:1105–1117

    Article  Google Scholar 

  • Marais ST, Tait RB, Cloete TJ, Nurick GN (2004) Material testing at high strain rate using the split Hopkinson pressure bar. Latin Amer J Solids Struct 1:319–339

    Google Scholar 

  • Meng H, Li QM (2003) An SHPB set-up with reduced time-shift and pressure bar length. Int J Impact Eng 28:677–696

    Article  Google Scholar 

  • Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  MATH  Google Scholar 

  • Moy P, Weerasooriya T, Juliano TF, VanLandingham MR (2006) Dynamic response of an alternative tissue stimulant, physically associating gels (PAG). In: Proceedings of the SEM annual conference and exposition on experimental and applied mechanics, June 4–7, 2006, St. Louis, Missouri

    Google Scholar 

  • Nemat-Nasser S (2000) Introduction to high strain rate testing. In: Mechanical testing and evaluation, ASM metals handbook, 8:427–446, American Society for Metals, Ohio

    Google Scholar 

  • Nemat-Nasser S, Isaacs JB, Starrett JE (1991) Hopkinson techniques for dynamic recovery experiments. Proc Royal Soc 435:371–391

    Article  Google Scholar 

  • Ninan L, Tsai J, Sun CT (2001) Use of split Hopkinson pressure bar for testing off-axis composites. Int J Impact Eng 25:291–313

    Article  Google Scholar 

  • Oguni K, Ravichandran G (1999) Dynamic behavior of fiber reinforced composites under multiaxial compression. In: Thick composites for loading bearing structures, pp 87–96, ASME

    Google Scholar 

  • Pan Y, Chen W, Song B (2005) The upper limit of constant strain rates in a split Hopkinson pressure bar experiment with elastic specimens. Exp Mech 45:440–446

    Article  Google Scholar 

  • Park SW, Zhou M (1999) Separation of elastic waves in split Hopkinson bars using one-point strain measurements. Exp Mech 39:287–294

    Article  Google Scholar 

  • Parry DJ, Dixon PR, Hodson S, Al-Maliky N (1994) Stress equilibrium effects within Hopkinson bar experiments. J Phys IV C8:107–112

    Google Scholar 

  • Parry PJ, Walker AG, Dixon PR (1995) Hopkinson bar pulse smoothing. Meas Sci Tech 6:443–446

    Article  Google Scholar 

  • Pervin F, Chen W (2009) Dynamic mechanical response of bovine gray matter and white matter brain tissues under compression. J Biomech 42:731–735

    Article  Google Scholar 

  • Progelhof RC (1986) Impact measurement of low-pressure thermoplastic structural foam. In: Proceedings of instrumented impact testing of plastics and composite materials, Houston TX, ASTM, March 11–12, 1986, 105–116

    Google Scholar 

  • Ramesh KT, Narasimhan S (1996) Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int J Solids Struct 33: 3723–3738

    Article  Google Scholar 

  • Rao S, Shim VPW, Quah SE (1997) Dynamic mechanical properties of polyurethane elastomers using a nonmetallic Hopkinson bar. J Appl Polym Sci 66:619–631

    Article  Google Scholar 

  • Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression resting of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77:263–267

    Article  Google Scholar 

  • Samanta SK (1971) Dynamic deformation of aluminum and copper at elevated temperatures. J Mech Phys Solids 19:117–135

    Article  Google Scholar 

  • Sarva S, Nemat-Nasser S (2001) Dynamic compressive strength of silicon carbide under uniaxial compression. Mater Sci Eng A317:140–144

    Google Scholar 

  • Sarva SS, Deschanel S, Boyce MC, Chen W (2007) Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48:2208–2213

    Article  Google Scholar 

  • Sawas O, Brar NS, Brockman RA (1998) Dynamic characterization of compliant materials using an all-polymeric split Hopkinson bar. Exp Mech 38:204–210

    Article  Google Scholar 

  • Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32:1384–1402

    Article  Google Scholar 

  • Song B, Chen W (2003) One-dimensional dynamic compressive behavior of EPDM rubber. ASME Trans J Eng Mater Tech 125:294–301

    Article  MathSciNet  Google Scholar 

  • Song B, Chen W (2004a) Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials. Exp Mech 44:300–312

    Article  Google Scholar 

  • Song B, Chen W (2004b) Dynamic compressive behavior of EPDM rubber under nearly uniaxial strain conditions. ASME Trans J Eng Mater Tech 126:213–217

    Article  Google Scholar 

  • Song B, Chen W (2004c) A SHPB pulse shaping technique for dynamic stress–strain loops. In: Proceedings of the 2004 SEM X international congress and exposition on experimental and applied mechanics, June 7–10, 2004, Costa Mesa, California

    Google Scholar 

  • Song B, Chen W (2004d) Loading and unloading SHPB pulse shaping techniques for dynamic hysteretic loops. Exp Mech 44:622–627

    Article  Google Scholar 

  • Song B, Chen W (2005) Split Hopkinson bar techniques for characterizing soft materials. Latin Amer J Solids Struct 2: 113–152

    Google Scholar 

  • Song B, Chen W, Weerasooriya T (2003) Quasi-static and dynamic compressive behaviors of a S-2 Glass/SC15 composite. J Compos Mater 37:1723–1743

    Article  Google Scholar 

  • Song B, Chen W, Frew DJ (2004) Quasi-static and dynamic compressive and failure behaviors of an epoxy syntactic foam. J Compos Mater 38:915–936

    Article  Google Scholar 

  • Song B, Chen W, Jiang X (2005a) Split Hopkinson pressure bar experiments on polymeric foams. Int J Vehicle Des 37:185–198

    Article  Google Scholar 

  • Song B, Chen W, Yanagita T, Frew DJ (2005b) Confinement effects on dynamic compressive properties of an epoxy syntactic foam. Compos Struct 67:279–287

    Article  Google Scholar 

  • Song B, Chen W, Yanagita T, Frew DJ (2005c) Temperature effects on dynamic compressive behavior of an epoxy syntactic foam. Compos Struct 67:289–298

    Article  Google Scholar 

  • Song B, Chen WW, Dou S, Winfree NA, Kang JH (2005d) Strain-rate effects on elastic and early cell-collapse responses of a polystyrene foam. Int J Impact Eng 31:509–521

    Article  Google Scholar 

  • Song B, Forrestal MJ, Chen W (2006) Dynamic and quasi-static propagation of compaction waves in a low density epoxy foam. Exp Mech 46:127–136

    Article  Google Scholar 

  • Song B, Chen W, Lu W-Y (2007a) Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam. Int J Mech Sci 49:1336–1343

    Google Scholar 

  • Song B, Ge Y, Chen W, Weerasooriya T (2007b) Radial inertia effects in Kolsky bar testing of extra-soft specimens. Exp Mech 47:659–670

    Article  Google Scholar 

  • Song B, Ge Y, Chen W, Weerasooriya T (2007c) Dynamic and quasi-static compressive response of a porcine muscle. J Biomech 40:2999–3005

    Article  Google Scholar 

  • Song B, Syn CJ, Grupido CL, Chen W, Lu W-Y (2008) A long split Hopkinson pressure bar (LSHPB) for intermediate-rate characterization of soft materials. Exp Mech 48:809–815

    Article  Google Scholar 

  • Soong SY, Cohen RE, Boyce MC, Chen W (2008) The effects of thermomechanical history and strain rate on antiplasticization of PVC. Polymer 49:1440–1443

    Article  Google Scholar 

  • Sounik DF, Gansen P, Clemons JL, Liddle JW (1997) Head-impact testing of polyurethane energy-absorbing (EA) foams. SAE Trans J Mater Manufact 106:211–220

    Google Scholar 

  • Subhash G, Ravichandran G. (2000) Split-Hopkinson pressure bar testing of ceramics. In: Mechanical testing and evaluation, ASM metals handbook, vol. 8. American Society for Metals, Ohio, pp 497–504

    Google Scholar 

  • Subhash G, Dowding RJ, Kecskes LJ (2002) Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy. Mater Sci Eng A334:33–40

    Google Scholar 

  • Togami TC, Baker WE, Forrestal MJ (1996) A split Hopkinson pressure bar technique to evaluate the performance of accelerometers. ASME Trans J Appl Mech 63:353–356

    Article  Google Scholar 

  • Wang L, Labibes K, Azari Z, Pluvinage G (1994) Generalization of split Hopkinson bar technique to use viscoelastic bars. Int J Impact Eng 15:669–686

    Article  Google Scholar 

  • Wasley RJ, Hoge KG, Cast JC (1969) Combined strain gauge-quartz crystal instrumented Hopkinson split bar. Rev Sci Instrum 40:889–894

    Article  Google Scholar 

  • Whirley RG, Hallquist JO (1991) DYNA3D: A nonlinear, explict, three-dimensional finite element code for solid and structural mechanics – user manual. UCRL-MA-107254. Lawrence Livermore National Laboratory, California

    Google Scholar 

  • Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J Phys IV France C3:91–96

    Google Scholar 

  • Zencker U, Clos R (1998) Limiting conditions for compression testing of flat specimens in the split Hopkinson pressure bar. Exp Mech 39:343–348

    Article  Google Scholar 

  • Zhang J, Song B, Pintar FA, Yogannandan N, Chen W, Gennarelli TA (2008) A pilot study on high strain rate material properties of brain stimulant. Biomed Sci Instru 44:129–134

    Google Scholar 

  • Zhao H, Gary G (1995) A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar: application to experimental techniques. J Mech Phys Solids 43:1335–1348

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao H, Gary G (1997) A new method for separation of waves. application to the SHPB technique for an unlimited measuring duration. J Mech Phys Solids 45:1185–1202

    Article  Google Scholar 

  • Zhao H, Gary G (2002) Behaviour characterization of polymeric foams over a large range of strain rates. Int J Vehicle Des 30:135–145

    Article  Google Scholar 

  • Zhao H, Gary G, Klepaczko JR (1997) On the use of a viscoelastic split Hopkinson pressure bar. Int J Impact Eng 19:319–330

    Article  Google Scholar 

  • Zukas, JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (1992) Impact Dynamics. Krieger, FL

    Google Scholar 

Download references

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4–94AL85000.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, W.W., Song, B. (2009). Dynamic Characterization of Soft Materials. In: Shukla, A., Ravichandran, G., Rajapakse, Y. (eds) Dynamic Failure of Materials and Structures. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0446-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0446-1_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0445-4

  • Online ISBN: 978-1-4419-0446-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics