Skip to main content

Functional MRI Studies of Memory in Aging, Mild Cognitive Impairment, and Alzheimer’s Disease

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

In the human brain, functionally and anatomically defined systems exist for encoding, consolidating, and retrieving memories of experiences (episodic memory); accumulating and accessing factual information in a body of knowledge (semantic memory); and actively processing and manipulating information (working memory). These three memory systems can be distinguished from other nondeclarative memory systems such as procedural learning and priming [1–4]. Brain-behavior studies using a variety of approaches from lesion-based research to functional magnetic resonance imaging (fMRI) demonstrate distinct though highly interrelated neural circuitry for episodic, semantic, and working memory [3, 5]. Each of these memory systems, despite their close interaction, is affected somewhat differently by aging and dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baddeley A. Working Memory. In: Gazzaniga MS, editor. The ­cognitive neurosciences. Cambridge, MA: MIT Press; 1995.

    Google Scholar 

  2. Baddeley A. Recent developments in working memory. Curr Opin Neurobiol. 1998;8(2):234–8.

    Article  PubMed  CAS  Google Scholar 

  3. Krause JB, Taylor JG, Schmidt D, Hautzel H, Mottaghy FM, Muller-Gartner HW. Imaging and neural modeling in episodic and working memory processes. Neural Netw. 2000;13(8–9):847–59.

    Article  PubMed  CAS  Google Scholar 

  4. Tulving E, Donaldson W. The organization of memory. New York: Academic Press; 1972.

    Google Scholar 

  5. Nyberg L, Marklund P, Persson J, et al. Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia. 2003;41:371–7.

    Article  PubMed  Google Scholar 

  6. Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8(3):198–204.

    Article  PubMed  CAS  Google Scholar 

  7. Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47.

    Article  PubMed  CAS  Google Scholar 

  8. Fletcher PC, Frith CD, Rugg MD. The functional neuroanatomy of episodic memory. Trends Neurosci. 1997;20(5):213–8.

    Article  PubMed  CAS  Google Scholar 

  9. Schacter DL, Wagner AD. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus. 1999;9(1):7–24.

    Article  PubMed  CAS  Google Scholar 

  10. Wagner AD, Koutstaal W, Schacter DL. When encoding yields remembering: insights from event-related neuroimaging. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1307–24.

    Article  PubMed  CAS  Google Scholar 

  11. Cabeza R. Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia. 2008;46(7):1813–27.

    Article  PubMed  Google Scholar 

  12. Davachi L. Item, context and relational episodic encoding in humans. Curr Opin Neurobiol. 2006;16(6):693–700.

    Article  PubMed  CAS  Google Scholar 

  13. Desgranges B, Baron JC, Eustache F. The functional neuroanatomy of episodic memory: The role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage. 1998;8:198–213.

    Article  PubMed  CAS  Google Scholar 

  14. Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci. 2007;30:123–52.

    Article  PubMed  CAS  Google Scholar 

  15. Fletcher PC, Henson RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain. 2001;124(Pt 5):849–81.

    Article  PubMed  CAS  Google Scholar 

  16. Gilbert SJ, Spengler S, Simons JS, et al. Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci. 2006;18(6):932–48.

    Article  PubMed  Google Scholar 

  17. Henson R. A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory. Q J Exp Psychol B. 2005;58(3–4):340–60.

    PubMed  Google Scholar 

  18. Kim H. Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. Neuroimage. 2010;50(4):1648–57.

    Article  PubMed  Google Scholar 

  19. Milner B, Petrides M, Smith ML. Frontal lobes and the temporal organization of memory. Hum Neurobiol. 1985;4(3):137–42.

    PubMed  CAS  Google Scholar 

  20. Shimamura AP. Memory and the prefrontal cortex. Ann NY Acad Sci. 1995;769:151–9.

    Article  PubMed  CAS  Google Scholar 

  21. Spaniol J, Davidson PS, Kim AS, Han H, Moscovitch M, Grady CL. Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia. 2009;47(8–9):1765–79.

    Article  PubMed  Google Scholar 

  22. Harrington GS, Tomaszewski Farias S, Buonocore MH, Yonelinas AP. The intersubject and intrasubject reproducibility of FMRI activation during three encoding tasks: implications for clinical applications. Neuroradiology. 2006;48(7):495–505.

    Article  PubMed  Google Scholar 

  23. Shallice T, Fletcher P, Frith CD, Grasby P, Frackowiak RS, Dolan RJ. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature. 1994;368(6472):633–5.

    Article  PubMed  CAS  Google Scholar 

  24. Kelley WM, Miezin FM, McDermott KB, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron. 1998;20(5):927–36.

    Article  PubMed  CAS  Google Scholar 

  25. Wagner AD, Poldrack RA, Eldridge LL, Desmond JE, Glover GH, Gabrieli JD. Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. Neuroreport. 1998;9(16):3711–7.

    Article  PubMed  CAS  Google Scholar 

  26. Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JD. Making memories: brain activity that predicts how well visual experience will be remembered. Science. 1998;281(5380):1185–7.

    Article  PubMed  CAS  Google Scholar 

  27. Gabrieli JD, Brewer JB, Desmond JE, Glover GH. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science. 1997;276(5310):264–6.

    Article  PubMed  CAS  Google Scholar 

  28. Roland PE, Zilles K. Structural divisions and functional fields in the human cerebral cortex. Brain Res Brain Res Rev. 1998;26(2–3):87–105.

    Article  PubMed  CAS  Google Scholar 

  29. McDermott KB, Buckner RL, Petersen SE, Kelley WM, Sanders AL. Set- and code-specific activation in frontal cortex: an fMRI study of encoding and retrieval of faces and words. J Cogn Neurosci. 1999;11(6):631–40.

    Article  PubMed  CAS  Google Scholar 

  30. Busatto G, Howard RJ, Ha Y, et al. A functional magnetic resonance imaging study of episodic memory. Neuroreport. 1997;8(12):2671–5.

    Article  PubMed  CAS  Google Scholar 

  31. Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain. 2001;124(Pt 2):399–412.

    Article  PubMed  CAS  Google Scholar 

  32. Otten LJ, Rugg MD. Task-dependency of the neural correlates of episodic encoding as measured by fMRI. Cereb Cortex. 2001;11(12):1150–60.

    Article  PubMed  CAS  Google Scholar 

  33. Gabrieli JD, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA. 1998;95(3):906–13.

    Article  PubMed  CAS  Google Scholar 

  34. Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci USA. 1994;91(6):2016–20.

    Article  PubMed  CAS  Google Scholar 

  35. Buckner RL. Functional-anatomic correlates of control processes in memory. J Neurosci. 2003;23(10):3999–4004.

    PubMed  CAS  Google Scholar 

  36. Simons JS, Spiers HJ. Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci. 2003;4(8):637–48.

    Article  PubMed  CAS  Google Scholar 

  37. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  PubMed  CAS  Google Scholar 

  38. Greicius MD, Krasnow B, Boyett-Anderson JM, et al. Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus. 2003;13(1):164–74.

    Article  PubMed  Google Scholar 

  39. Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C. Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain. 2003;126(Pt 1):43–56.

    Article  PubMed  CAS  Google Scholar 

  40. Davachi L, Mitchell JP, Wagner AD. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc Natl Acad Sci USA. 2003;100(4):2157–62.

    Article  PubMed  CAS  Google Scholar 

  41. Davachi L, Wagner AD. Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol. 2002;88(2):982–90.

    PubMed  Google Scholar 

  42. Lepage M, Habib R, Tulving E. Hippocampal PET activations of memory encoding and retrieval: The HIPER model. Hippocampus. 1998;8:313–22.

    Article  PubMed  CAS  Google Scholar 

  43. Rombouts SA, Machielsen WC, Witter MP, Barkhof F, Lindeboom J, Scheltens P. Visual association encoding activates the medial ­temporal lobe: a functional magnetic resonance imaging study. Hippocampus. 1997;7(6):594–601.

    Article  PubMed  CAS  Google Scholar 

  44. Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93(16):8660–5.

    Article  PubMed  CAS  Google Scholar 

  45. Braak H, Braak E, Yilmazer D, Bohl J. Functional anatomy of human hippocampal formation and related structures. J Child Neurol. 1996;11(4):265–75.

    Article  PubMed  CAS  Google Scholar 

  46. Van Hoesen GW. Anatomy of the medial temporal lobe. Magn Reson Imaging. 1995;13(8):1047–55.

    Article  PubMed  Google Scholar 

  47. Dolan RJ, Fletcher PC. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature. 1997;388(6642):582–5.

    Article  PubMed  CAS  Google Scholar 

  48. Golby AJ, Poldrack RA, Brewer JB, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain. 2001;124(Pt 9):1841–54.

    Article  PubMed  CAS  Google Scholar 

  49. Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science. 1998;281(5380):1188–91.

    Article  PubMed  CAS  Google Scholar 

  50. Aguirre GK, Detre JA, Alsop DC, D’Esposito M. The parahippocampus subserves topographical learning in man. Cereb Cortex. 1996;6(6):823–9.

    Article  PubMed  CAS  Google Scholar 

  51. Buckner RL, Koutstaal W, Schacter DL, Dale AM, Rotte M, Rosen BR. Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage. 1998;7(3):163–75.

    Article  PubMed  CAS  Google Scholar 

  52. Buckner RL, Koutstaal W, Schacter DL, Wagner AD, Rosen BR. Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. Neuroimage. 1998;7(3):151–62.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner AD, Desmond JE, Glover GH, Gabrieli JD. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain. 1998;121(Pt 10):1985–2002.

    Article  PubMed  Google Scholar 

  54. Lepage M, Ghaffar O, Nyberg L, Tulving E. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci USA. 2000;97(1):506–11.

    Article  PubMed  CAS  Google Scholar 

  55. Nyberg L, Cabeza R, Tulving E. PET studies of encoding and retrieval: The HERA Model. Psychol Bull Rev. 1996;3:135–48.

    Article  Google Scholar 

  56. Nyberg L, McIntosh AR, Cabeza R, Habib R, Houle S, Tulving E. General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc Natl Acad Sci USA. 1996;93(20):11280–5.

    Article  PubMed  CAS  Google Scholar 

  57. Wagner K, Frings L, Quiske A, et al. The reliability of fMRI activations in the medial temporal lobes in a verbal episodic memory task. Neuroimage. 2005;28(1):122–31.

    Article  PubMed  Google Scholar 

  58. Henson RN, Shallice T, Dolan RJ. Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain. 1999;122(Pt 7):1367–81.

    Article  PubMed  Google Scholar 

  59. McDermott KB, Ojemann JG, Petersen SE, et al. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory. 1999;7(5–6):661–78.

    Article  PubMed  CAS  Google Scholar 

  60. Henson RN, Hornberger M, Rugg MD. Further dissociating the processes involved in recognition memory: an FMRI study. J Cogn Neurosci. 2005;17(7):1058–73.

    Article  PubMed  Google Scholar 

  61. Daselaar SM, Fleck MS, Cabeza R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J Neurophysiol. 2006;96(4):1902–11.

    Article  PubMed  CAS  Google Scholar 

  62. Dolcos F, LaBar KS, Cabeza R. Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc Natl Acad Sci USA. 2005;102(7):2626–31.

    Article  PubMed  CAS  Google Scholar 

  63. Montaldi D, Spencer TJ, Roberts N, Mayes AR. The neural system that mediates familiarity memory. Hippocampus. 2006;16(5):504–20.

    Article  PubMed  Google Scholar 

  64. Yonelinas AP, Otten LJ, Shaw KN, Rugg MD. Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci. 2005;25(11):3002–8.

    Article  PubMed  CAS  Google Scholar 

  65. Milner B. Psychological aspects of focal epilepsy and its neurosurgical management. Adv Neurol. 1975;8:299–321.

    PubMed  CAS  Google Scholar 

  66. Hermann BP, Seidenberg M, Haltiner A, Wyler AR. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia. 1995;36(2):137–45.

    Article  PubMed  CAS  Google Scholar 

  67. Saykin AJ, Gur RC, Sussman NM, O’Connor MJ, Gur RE. Memory deficits before and after temporal lobectomy: Effect of laterality and age of onset. Brain Cogn. 1989;9:191–200.

    Article  PubMed  CAS  Google Scholar 

  68. Saykin AJ, Robinson LJ, Stafiniak P, et al. Neuropsychological effects of temporal lobectomy: Acute changes in memory, language, and music. In: Bennett T, editor. Neuropsychology of Epilepsy. New York: Plenum Press; 1992.

    Google Scholar 

  69. Sperling RA, Bates JF, Cocchiarella AJ, Schacter DL, Rosen BR, Albert MS. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp. 2001;14(3):129–39.

    Article  PubMed  CAS  Google Scholar 

  70. Ranganath C, Yonelinas AP, Cohen MX, Dy CJ, Tom SM, D’Esposito M. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia. 2004;42(1):2–13.

    Article  PubMed  Google Scholar 

  71. Vilberg KL, Rugg MD. Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia. 2008;46(7):1787–99.

    Article  PubMed  Google Scholar 

  72. Kahn I, Davachi L, Wagner AD. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J Neurosci. 2004;24(17):4172–80.

    Article  PubMed  CAS  Google Scholar 

  73. Gottfried JA, Smith AP, Rugg MD, Dolan RJ. Remembrance of odors past: human olfactory cortex in cross-modal recognition memory. Neuron. 2004;42(4):687–95.

    Article  PubMed  CAS  Google Scholar 

  74. Henson RN, Rugg MD, Shallice T, Josephs O, Dolan RJ. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J Neurosci. 1999;19(10):3962–72.

    PubMed  CAS  Google Scholar 

  75. Woodruff CC, Johnson JD, Uncapher MR, Rugg MD. Content-specificity of the neural correlates of recollection. Neuropsychologia. 2005;43(7):1022–32.

    Article  PubMed  Google Scholar 

  76. Corbetta M, Kincade JM, Shulman GL. Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci. 2002;14(3):508–23.

    Article  PubMed  Google Scholar 

  77. Herron JE, Henson RN, Rugg MD. Probability effects on the neural correlates of retrieval success: an fMRI study. Neuroimage. 2004;21(1):302–10.

    Article  PubMed  Google Scholar 

  78. Ravizza SM, Delgado MR, Chein JM, Becker JT, Fiez JA. Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage. 2004;22(2):562–73.

    Article  PubMed  Google Scholar 

  79. Shannon BJ, Buckner RL. Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J Neurosci. 2004;24(45):10084–92.

    Article  PubMed  CAS  Google Scholar 

  80. Dobbins IG, Han S. Cue- versus probe-dependent prefrontal cortex activity during contextual remembering. J Cogn Neurosci. 2006;18(9):1439–52.

    Article  PubMed  Google Scholar 

  81. Dobbins IG, Han S. Isolating rule- versus evidence-based prefrontal activity during episodic and lexical discrimination: a functional magnetic resonance imaging investigation of detection theory distinctions. Cereb Cortex. 2006;16(11):1614–22.

    Article  PubMed  Google Scholar 

  82. Simons JS, Owen AM, Fletcher PC, Burgess PW. Anterior prefrontal cortex and the recollection of contextual information. Neuropsychologia. 2005;43(12):1774–83.

    Article  PubMed  Google Scholar 

  83. Simons JS, Gilbert SJ, Owen AM, Fletcher PC, Burgess PW. Distinct roles for lateral and medial anterior prefrontal cortex in contextual recollection. J Neurophysiol. 2005;94(1):813–20.

    Article  PubMed  Google Scholar 

  84. Velanova K, Jacoby LL, Wheeler ME, McAvoy MP, Petersen SE, Buckner RL. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J Neurosci. 2003;23(24):8460–70.

    PubMed  CAS  Google Scholar 

  85. Dobbins IG, Foley H, Schacter DL, Wagner AD. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron. 2002;35(5):989–96.

    Article  PubMed  CAS  Google Scholar 

  86. Dobbins IG, Wagner AD. Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cereb Cortex. 2005;15(11):1768–78.

    Article  PubMed  Google Scholar 

  87. Cabeza R, Rao SM, Wagner AD, Mayer AR, Schacter DL. Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc Natl Acad Sci USA. 2001;98(8):4805–10.

    Article  PubMed  CAS  Google Scholar 

  88. Anderson ND, Craik FIM. Memory in the aging brain. In: Craik FIM, editor. The Oxford Handbook of Memory. New York: Oxford; 2000. p. 411–25.

    Google Scholar 

  89. Balota DA, Dolan PO, Duchek JM. Memory changes in healthy older adults. In: Craik FIM, editor. The Oxford Handbook of Memory. New York: Oxford; 2000. p. 395–409.

    Google Scholar 

  90. Nyberg L, Backman L, Erngrund K, Olofsson U, Nilsson LG. Age differences in episodic memory, semantic memory, and priming: relationships to demographic, intellectual, and biological factors. J Gerontol B Psychol Sci Soc Sci. 1996;51(4):P234–240.

    Article  PubMed  CAS  Google Scholar 

  91. Grady C, Craik FI. Changes in memory processing with age. Curr Opin Neurobiol. 2000;10:224–31.

    Article  PubMed  CAS  Google Scholar 

  92. Park DC, Smith AD, Lautenschlager G, et al. Mediators of long-term memory performance across the lifespan. Psychol Aging. 1996;11:621–37.

    Article  PubMed  CAS  Google Scholar 

  93. Zacks RT, Hasher L, Li KZH. Human memory. In: Salthouse TA, editor. The Handbook of Aging and Cognition. Mahwah, NJ: Erlbaum; 1999. p. 200–30.

    Google Scholar 

  94. Baltes PB. The aging mind: potential and limits. Gerontologist Eng. 1993;33(5):580–94.

    Article  CAS  Google Scholar 

  95. Flashman LA, Wishart HA, Saykin AJ. Boundaries Between Normal Aging and Dementia: Perspectives from Neuropsychological and Neuroimaging Investigations. In: Oxman TE, editor. Dementia: Presentations, Differential Diagnosis and Nosology. 2nd ed. Baltimore: Johns Hopkins University Press; 2003.

    Google Scholar 

  96. Schroots JJF, Birren JE. Theoretical issues and basic questions in the planning of longitudinal studies of health and aging. In: Schroots JJF, editor. Aging, health and competence: The next generation of longitudinal studies. Amsterdam: Elsevier; 1993. p. 4–34.

    Google Scholar 

  97. Raz N, Gunning FM, Head D, et al. Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cereb Cortex. 1997;7(3):268–82.

    Article  PubMed  CAS  Google Scholar 

  98. Bigler ED, Blatter DD, Anderson CV, et al. Hippocampal volume in normal aging and traumatic brain injury. AJNR Am J Neuroradiol. 1997;18(1):11–23.

    PubMed  CAS  Google Scholar 

  99. DeCarli C, Murphy DG, Gillette JA, et al. Lack of age-related differences in temporal lobe volume of very healthy adults. AJNR Am J Neuroradiol Eng. 1994;15(4):689–96.

    CAS  Google Scholar 

  100. Greenwood PM. The frontal aging hypothesis evaluated. J Int Neuropsychol Soc. 2000;6:705–26.

    Article  PubMed  CAS  Google Scholar 

  101. Greenwood PM. Reply to west. J Int Neuropsychol Soc. 2000;6:730.

    Article  Google Scholar 

  102. West R. In defense of the frontal lobe hypothesis of cognitive aging. J Int Neuropsychol Soc. 2000;6:727–9.

    Article  PubMed  CAS  Google Scholar 

  103. Kempermann G, Gage FH. New nerve cells for the adult brain. Sci Am. 1999;280:48–53.

    Article  PubMed  CAS  Google Scholar 

  104. Reuter-Lorenz PA, Stanczak L, Miller AC. Neural recruitment and cognitive aging: Two hemispheres are better than one, especially as you age. Psychol Sci. 1999;10(6):494–500.

    Article  Google Scholar 

  105. Cabeza R. Hemispheric asymmetry reduction in old adults: The HAROLD model. Psychol Aging. 2002;17:85–100.

    Article  PubMed  Google Scholar 

  106. Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage. 2002;17:1394–402.

    Article  PubMed  Google Scholar 

  107. Stebbins GT, Carrillo MC, Dorfman J, et al. Aging effects on memory encoding in the frontal lobes. Psychol Aging. 2002;17(1):44–55.

    Article  PubMed  Google Scholar 

  108. Anderson KE, Perera GM, Hilton J, Zubin N, Paz Dela R, Stern Y. Functional magnetic resonance imaging study of word recognition in normal elders. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(4):647–50.

    Article  PubMed  Google Scholar 

  109. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex. 2004;14(4):364–75.

    Article  PubMed  Google Scholar 

  110. Grady CL. Age-related differences in face processing: a meta-analysis of three functional neuroimaging experiments. Can J Exp Psychol. 2002;56(3):208–20.

    PubMed  Google Scholar 

  111. Morcom AM, Good CD, Frackowiak RS, Rugg MD. Age effects on the neural correlates of successful memory encoding. Brain. 2003;126(Pt 1):213–29.

    Article  PubMed  Google Scholar 

  112. Morcom AM, Li J, Rugg MD. Age effects on the neural correlates of episodic retrieval: increased cortical recruitment with matched performance. Cereb Cortex. 2007;17(11):2491–506.

    Article  PubMed  Google Scholar 

  113. Grady CL, McIntosh AR, Rajah MN, Beig S, Craik FI. The effects of age on the neural correlates of episodic encoding. Cereb Cortex. 1999;9(8):805–14.

    Article  PubMed  CAS  Google Scholar 

  114. Mandzia JL, Black SE, McAndrews MP, Grady C, Graham S. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly. Hum Brain Mapp. 2004;21(1):1–14.

    Article  PubMed  Google Scholar 

  115. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL. Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron. 2002;33(5):827–40.

    Article  PubMed  CAS  Google Scholar 

  116. Rajah MN, D’Esposito M. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain. 2005;128(Pt 9):1964–83.

    Article  PubMed  Google Scholar 

  117. Belger A, Banich MT. Costs and benefits of integrating information between the cerebral hemispheres: a computational perspective. Neuropsychology. 1998;12(3):380–98.

    Article  PubMed  CAS  Google Scholar 

  118. Erickson KI, Colcombe SJ, Wadhwa R, et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol Aging. 2007;28(2):272–83.

    Article  PubMed  Google Scholar 

  119. Fawcett JW, Rosser AE, Dunnett SB. Brain Damage, Brain Repair. New York: Oxford U.P; 2001.

    Google Scholar 

  120. Muller RA, Rothermel RD, Behen ME, Muzik O, Mangner TJ, Chugani HT. Differential patterns of language and motor reorganization following early left hemisphere lesion: a PET study. Arch Neurol. 1998;55(8):1113–9.

    Article  PubMed  CAS  Google Scholar 

  121. Baltes PB, Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging. 1997;12(1):12–21.

    Article  PubMed  CAS  Google Scholar 

  122. Cabeza R. Cognitive neuroscience of aging: contributions of functional neuroimaging. Scand J Psychol. 2001;42(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  123. Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex. 2006;16(12):1771–82.

    Article  PubMed  Google Scholar 

  124. Dennis NA, Daselaar S, Cabeza R. Effects of aging on transient and sustained successful memory encoding activity. Neurobiol Aging. 2007;28(11):1749–58.

    Article  PubMed  Google Scholar 

  125. Sperling RA, Bates JF, Chua EF, et al. FMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  126. Small SA, Tsai WY, DeLaPaz R, Mayeux R, Stern Y. Imaging hippocampal function across the human life span: is memory decline normal or not? Ann Neurol. 2002;51(3):290–5.

    Article  PubMed  Google Scholar 

  127. Small SA, Wu EX, Bartsch D, et al. Imaging physiologic dysfunction of individual hippocampal subregions in humans and genetically modified mice. Neuron. 2000;28(3):653–64.

    Article  PubMed  CAS  Google Scholar 

  128. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R. Que PASA? The posterior-anterior shift in aging. Cereb Cortex. 2008;18(5):1201–9.

    Article  PubMed  Google Scholar 

  129. Dennis NA, Hayes SM, Prince SE, Madden DJ, Huettel SA, Cabeza R. Effects of aging on the neural correlates of successful item and source memory encoding. J Exp Psychol Learn Mem Cogn. 2008;34(4):791–808.

    Article  PubMed  Google Scholar 

  130. Petersen RC. Aging, mild cognitive impairment, and Alzheimer’s disease. Neurol Clin. 2000;18(4):789–806.

    Article  PubMed  CAS  Google Scholar 

  131. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.

    Article  PubMed  CAS  Google Scholar 

  132. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56:1133–42.

    PubMed  CAS  Google Scholar 

  133. Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–55.

    Article  PubMed  Google Scholar 

  134. Saykin AJ, Wishart HA. Mild Cognitive Impairment: Conceptual issues and structural and functional brain correlates. In: Ovsiew F, editor. Seminars in clinical neuropsychiatry. 2003.

    Google Scholar 

  135. Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–8.

    Article  PubMed  CAS  Google Scholar 

  136. Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport. 2002;13:1939–43.

    Article  PubMed  Google Scholar 

  137. de Leon MJ, Convit A, DeSanti S, et al. The hippocampus in aging and Alzheimer’s disease. Neuroimaging Clin N Am Eng. 1995;5(1):1–17.

    Google Scholar 

  138. de Leon MJ, Convit A, George AE, et al. In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer’s disease. Ann NY Acad Sci Eng. 1996;777:1–13.

    Article  CAS  Google Scholar 

  139. Jack Jr CR, Petersen RC, O’ Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurol Eng. 1992;42(1):183–8.

    Google Scholar 

  140. Jack Jr CR, Shiung MM, Gunter JL, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004;62(4):591–600.

    PubMed  Google Scholar 

  141. Jack Jr CR, Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology. 2005;65(8):1227–31.

    Article  PubMed  Google Scholar 

  142. Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res. 2009;6(4):347–61.

    Article  PubMed  CAS  Google Scholar 

  143. Devanand DP, Liu X, Tabert MH, et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biol Psychiatry. 2008;64(10):871–9.

    Article  PubMed  Google Scholar 

  144. Risacher SL, Saykin AJ. Neuroimaging of Alzheimer’s Disease, Mild Cognitive Impairment and Other Dementias. In: Sweet LH, Cohen RA, editors. Brain imaging in behavioral medicine and clinical neuroscience. New York: Springer; 2011.

    Google Scholar 

  145. Zakzanis KK, Graham SJ, Campbell Z. A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol Rev. 2003;13(1):1–18.

    Article  PubMed  Google Scholar 

  146. de Leon MJ, DeSanti S, Zinkowski R, et al. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J Intern Med. 2004;256(3):205–23.

    Article  PubMed  Google Scholar 

  147. de Leon MJ, Mosconi L, Blennow K, et al. Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Ann NY Acad Sci. 2007;1097:114–45.

    Article  PubMed  CAS  Google Scholar 

  148. DeCarli C. The role of neuroimaging in dementia. Clin Geriatr Med. 2001;17(2):255–79.

    Article  PubMed  CAS  Google Scholar 

  149. Good CD. Dementia and ageing. Br Med Bull. 2003;65:159–68.

    Article  PubMed  Google Scholar 

  150. Weiner MW. Imaging and biomarkers will be used for detection and monitoring progression of early Alzheimer’s disease. J Nutr Health Aging. 2009;13:332.

    Article  PubMed  CAS  Google Scholar 

  151. Whitwell JL, Jack CR, Jr. Neuroimaging in dementia. Neurol Clin. 2007;25(3):843–857, viii.

    Google Scholar 

  152. Wolf H, Hensel A, Kruggel F, et al. Structural correlates of mild cognitive impairment. Neurobiol Aging. 2004;25(7):913–24.

    Article  PubMed  Google Scholar 

  153. Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand Suppl. 2003;179:52–76.

    Article  PubMed  Google Scholar 

  154. Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65:557–68.

    Article  PubMed  Google Scholar 

  155. Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65(3):404–11.

    Article  PubMed  CAS  Google Scholar 

  156. Pariente J, Cole S, Henson R, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol. 2005;58(6):870–9.

    Article  PubMed  Google Scholar 

  157. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: A functional MRI study. Neurology. 2001;57:812–6.

    PubMed  CAS  Google Scholar 

  158. Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol. 2000;21(10):1869–75.

    PubMed  CAS  Google Scholar 

  159. Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45(4):466–72.

    Article  PubMed  CAS  Google Scholar 

  160. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology. 2003;61(4):500–6.

    PubMed  CAS  Google Scholar 

  161. Gron G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol. 2002;51(4):491–8.

    Article  PubMed  Google Scholar 

  162. Corkin S, Functional MRI. for studying episodic memory in aging and Alzheimer’s disease. Geriatrics. 1998;53 Suppl 1:S13–15.

    PubMed  Google Scholar 

  163. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23(3):986–93.

    PubMed  CAS  Google Scholar 

  164. Golby A, Silverberg G, Race E, et al. Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain. 2005;128(Pt 4):773–87.

    Article  PubMed  Google Scholar 

  165. Saykin AJ, Flashman LA, Johnson S, et al. Frontal and hippocampal memory circuitry in early Alzheimer’s disease: Relation of structural and functional MRI changes. Neuroimage. 2000;11(5):S123.

    Article  Google Scholar 

  166. Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.

    Article  PubMed  CAS  Google Scholar 

  167. Trivedi MA, Murphy CM, Goetz C, et al. fMRI activation changes during successful episodic memory encoding and recognition in amnestic mild cognitive impairment relative to cognitively healthy older adults. Dement Geriatr Cogn Disord. 2008;26(2):123–37.

    Article  PubMed  Google Scholar 

  168. Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56(1):27–35.

    Article  PubMed  Google Scholar 

  169. Hamalainen A, Pihlajamaki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging. 2007;28(12):1889–903.

    Article  PubMed  Google Scholar 

  170. Johnson SC, Schmitz TW, Moritz CH, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging. 2006;27(11):1604–12.

    Article  PubMed  CAS  Google Scholar 

  171. O’Brien JL, O’Keefe KM, LaViolette PS, et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 2010;74(24):1969–76.

    Article  PubMed  Google Scholar 

  172. Johnson SC, Baxter LC, Susskind-Wilder L, Connor DJ, Sabbagh MN, Caselli RJ. Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia. 2004;42(7):980–9.

    Article  PubMed  Google Scholar 

  173. Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry. 2008;79(6):630–5.

    Article  PubMed  CAS  Google Scholar 

  174. Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CE. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage. 2010;51(3):1242–52.

    Article  PubMed  Google Scholar 

  175. McIntosh AR. Towards a network theory of cognition. Neural Netw. 2000;13(8–9):861–70.

    Article  PubMed  CAS  Google Scholar 

  176. Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6(3):218–29.

    Article  PubMed  CAS  Google Scholar 

  177. Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci. 2004;16(9):1484–92.

    Article  PubMed  Google Scholar 

  178. Nyberg L, Persson J, Habib R, et al. Large scale neurocognitive networks underlying episodic memory. J Cogn Neurosci. 2000;12(1):163–73.

    Article  PubMed  CAS  Google Scholar 

  179. Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus. 2005;15(8):997–1005.

    Article  PubMed  Google Scholar 

  180. Burianova H, McIntosh AR, Grady CL. A common functional brain network for autobiographical, episodic, and semantic memory retrieval. Neuroimage. 2010;49(1):865–74.

    Article  PubMed  Google Scholar 

  181. Takahashi E, Ohki K, Kim DS. Dissociated pathways for successful memory retrieval from the human parietal cortex: anatomical and functional connectivity analyses. Cereb Cortex. 2008;18(8):1771–8.

    Article  PubMed  Google Scholar 

  182. Iidaka T, Matsumoto A, Nogawa J, Yamamoto Y, Sadato N. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cereb Cortex. 2006;16(9):1349–60.

    Article  PubMed  Google Scholar 

  183. Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94.

    Article  PubMed  CAS  Google Scholar 

  184. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.

    Article  PubMed  CAS  Google Scholar 

  185. Cabeza R, Grady CL, Nyberg L, et al. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci. 1997;17(1):391–400.

    PubMed  CAS  Google Scholar 

  186. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3(2):e17.

    Article  PubMed  CAS  Google Scholar 

  187. Grady CL, McIntosh AR, Craik FI. Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus. 2003;13(5):572–86.

    Article  PubMed  Google Scholar 

  188. Wang L, Laviolette P, O’Keefe K, et al. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. Neuroimage. 2010;51(2):910–7.

    Article  PubMed  Google Scholar 

  189. Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56(5):924–35.

    Article  PubMed  CAS  Google Scholar 

  190. Damoiseaux JS, Beckmann CF, Arigita EJ, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18(8):1856–64.

    Article  PubMed  CAS  Google Scholar 

  191. Lustig C, Snyder AZ, Bhakta M, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA. 2003;100(24):14504–9.

    Article  PubMed  CAS  Google Scholar 

  192. Daselaar SM, Prince SE, Cabeza R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage. 2004;23(3):921–7.

    Article  PubMed  CAS  Google Scholar 

  193. Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology. 2002;225(1):253–9.

    Article  PubMed  Google Scholar 

  194. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101(13):4637–42.

    Article  PubMed  CAS  Google Scholar 

  195. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp. 2005;26(4):231–9.

    Article  PubMed  Google Scholar 

  196. Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA. 2007;104(47):18760–5.

    Article  PubMed  CAS  Google Scholar 

  197. Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31(2):496–504.

    Article  PubMed  Google Scholar 

  198. Wagner AD. Early detection of Alzheimer’s disease: An fMRI marker for people at risk? Nat Neurosci. 2000;3(10):973–4.

    Article  PubMed  CAS  Google Scholar 

  199. Rodda JE, Dannhauser TM, Cutinha DJ, Shergill SS, Walker Z. Subjective cognitive impairment: increased prefrontal cortex activation compared to controls during an encoding task. Int J Geriatr Psychiatry. 2009;24(8):865–74.

    Article  PubMed  Google Scholar 

  200. Smith JD. Apolipoproteins and aging: emerging mechanisms. Ageing Res Rev. 2002;1(3):345–65.

    Article  PubMed  CAS  Google Scholar 

  201. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.

    Article  PubMed  CAS  Google Scholar 

  202. Burggren AC, Small GW, Sabb FW, Bookheimer SY. Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):44–51.

    PubMed  Google Scholar 

  203. Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64(3):501–8.

    Article  PubMed  Google Scholar 

  204. Elgh E, Larsson A, Eriksson S, Nyberg L. Altered prefrontal brain activity in persons at risk for Alzheimer’s disease: an fMRI study. Int Psychogeriatr. 2003;15(2):121–33.

    Article  PubMed  Google Scholar 

  205. Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Med. 2006;4:1.

    Article  PubMed  CAS  Google Scholar 

  206. Rombouts SA, Barkhof F, Van Meel CS, Scheltens P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;73(6):665–71.

    Article  PubMed  CAS  Google Scholar 

  207. Kircher TT, Erb M, Grodd W, Leube DT. Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am J Geriatr Psychiatry. 2005;13(11):1006–13.

    PubMed  Google Scholar 

  208. Goekoop R, Scheltens P, Barkhof F, Rombouts SA. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation – a pharmacological fMRI study. Brain. 2006;129(Pt 1):141–57.

    PubMed  Google Scholar 

  209. Dumas JA, McDonald BC, Saykin AJ, et al. Cholinergic modulation of hippocampal activity during episodic memory encoding in postmenopausal women: a pilot study. Menopause. 2010;17(4):852–9.

    Article  PubMed  Google Scholar 

  210. Bozzali M, MacPherson SE, Dolan RJ, Shallice T. Left prefrontal cortex control of novel occurrences during recollection: a psychopharmacological study using scopolamine and event-related fMRI. Neuroimage. 2006;33(1):286–95.

    Article  PubMed  CAS  Google Scholar 

  211. Budson AE. Understanding memory dysfunction. Neurologist. 2009;15(2):71–9.

    Article  PubMed  Google Scholar 

  212. Martin A. Functional neuroimaging of semantic memory. In: Kingstone A, editor. Handbook of Functional Neuroimaging of Cognition. Cambridge, MA: Bradford; 2001. p. 153–86.

    Google Scholar 

  213. Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19(12):2767–96.

    Article  PubMed  Google Scholar 

  214. Grossman M, Smith EE, Koenig P, et al. The neural basis for categorization in semantic memory. Neuroimage. 2002;17(3):1549–61.

    Article  PubMed  Google Scholar 

  215. Levy DA, Bayley PJ. Squire LR. The anatomy of semantic knowledge: medial vs. lateral temporal lobe. Proc Natl Acad Sci USA. 2004;101(17):6710–5.

    Article  PubMed  CAS  Google Scholar 

  216. Vigneau M, Beaucousin V, Herve PY, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30(4):1414–32.

    Article  PubMed  CAS  Google Scholar 

  217. Grossman M, Koenig P, DeVita C, et al. The neural basis for category-specific knowledge: an fMRI study. Neuroimage. 2002;15(4):936–48.

    Article  PubMed  Google Scholar 

  218. Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain. 2006;129(Pt 8):2132–47.

    Article  PubMed  Google Scholar 

  219. Warrington EK. The selective impairment of semantic memory. Q J Exp Psychol. 1975;27(4):635–57.

    Article  PubMed  CAS  Google Scholar 

  220. Mummery CJ, Patterson K, Wise RJ, Vandenberghe R, Price CJ, Hodges JR. Disrupted temporal lobe connections in semantic dementia. Brain. 1999;122(Pt 1):61–73.

    Article  PubMed  Google Scholar 

  221. Wallentin M, Lund TE, Ostergaard S, Ostergaard L, Roepstorff A. Motion verb sentences activate left posterior middle temporal cortex despite static context. Neuroreport. 2005;16(6):649–52.

    Article  PubMed  Google Scholar 

  222. Simmons WK, Ramjee V, Beauchamp MS, McRae K, Martin A, Barsalou LW. A common neural substrate for perceiving and knowing about color. Neuropsychologia. 2007;45(12):2802–10.

    Article  PubMed  Google Scholar 

  223. Gainotti G. What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex. 2000;36(4):539–59.

    Article  PubMed  CAS  Google Scholar 

  224. Kuchinke L, Jacobs AM, Grubich C, Vo ML, Conrad M, Herrmann M. Incidental effects of emotional valence in single word processing: an fMRI study. Neuroimage. 2005;28(4):1022–32.

    Article  PubMed  Google Scholar 

  225. Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10(3):295–307.

    Article  PubMed  CAS  Google Scholar 

  226. Bechara A, Tranel D, Damasio H. Characterization of the ­decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123(Pt 11):2189–202.

    Article  PubMed  Google Scholar 

  227. Ni W, Constable RT, Mencl WE, et al. An event-related neuroimaging study distinguishing form and content in sentence processing. J Cogn Neurosci. 2000;12(1):120–33.

    Article  PubMed  CAS  Google Scholar 

  228. Humphries C, Binder JR, Medler DA, Liebenthal E. Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage. 2007;36(3):924–32.

    Article  PubMed  Google Scholar 

  229. Lehmann S, Murray MM. The role of multisensory memories in unisensory object discrimination. Brain Res Cogn Brain Res. 2005;24(2):326–34.

    Article  PubMed  Google Scholar 

  230. Robinson G, Blair J, Cipolotti L. Dynamic aphasia: an inability to select between competing verbal responses? Brain. 1998;121(Pt 1):77–89.

    Article  PubMed  Google Scholar 

  231. Price CJ, Mummery CJ, Moore CJ, Frakowiak RS, Friston KJ. Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. J Cogn Neurosci. 1999;11(4):371–82.

    Article  PubMed  CAS  Google Scholar 

  232. Epstein RA, Parker WE, Feiler AM. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci. 2007;27(23):6141–9.

    Article  PubMed  CAS  Google Scholar 

  233. Maddock RJ. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 1999;22(7):310–6.

    Article  PubMed  CAS  Google Scholar 

  234. Hassabis D, Kumaran D, Maguire EA. Using imagination to understand the neural basis of episodic memory. J Neurosci. 2007;27(52):14365–74.

    Article  PubMed  CAS  Google Scholar 

  235. O’Reilly RC, Rudy JW. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev. 2001;108(2):311–45.

    Article  PubMed  Google Scholar 

  236. Salthouse TA. Speed and knowledge as determinants of adult age differences in verbal tasks. J Gerontology Eng. 1993;48(1):29–36.

    Google Scholar 

  237. Albert MS, Heller HS, Milberg W. Changes in naming ability with age. Psychol Aging. 1988;3(2):173–8.

    Article  PubMed  CAS  Google Scholar 

  238. Au R, Joung P, Nicholas M, Obler LK. Naming ability across the adult life span. Aging Cognition. 1995;2(4):300–11.

    Article  Google Scholar 

  239. Rich JB, Park NW, Dopkins S, Brandt J. What do Alzheimer’s disease patients know about animals? It depends on task structure and presentation format. J Int Neuropsychol Soc. 2002;8(1):83–94.

    Article  PubMed  Google Scholar 

  240. Cooke A, Grossman M, DeVita C, et al. Large-scale neural network for sentence processing. Brain Lang. 2006;96(1):14–36.

    Article  PubMed  Google Scholar 

  241. Gold BT, Andersen AH, Jicha GA, Smith CD. Aging influences the neural correlates of lexical decision but not automatic semantic priming. Cereb Cortex. 2009;19(11):2671–9.

    Article  PubMed  Google Scholar 

  242. Johnson SC, Saykin AJ, Flashman LA, et al. Similarities and differences in semantic and phonological processing with age: Patterns of functional MRI activation. Aging Neuropsychol Cognition. 2001;8(4):307–20.

    Article  Google Scholar 

  243. Nielson KA, Douville KL, Seidenberg M, et al. Age-related functional recruitment for famous name recognition: an event-related fMRI study. Neurobiol Aging. 2006;27(10):1494–504.

    Article  PubMed  Google Scholar 

  244. Wierenga CE, Benjamin M, Gopinath K, et al. Age-related changes in word retrieval: role of bilateral frontal and subcortical networks. Neurobiol Aging. 2008;29(3):436–51.

    Article  PubMed  Google Scholar 

  245. Grossman M, Cooke A, DeVita C, et al. Age-related changes in working memory during sentence comprehension: an fMRI study. Neuroimage. 2002;15(2):302–17.

    Article  PubMed  Google Scholar 

  246. Tyler LK, Shafto MA, Randall B, Wright P, Marslen-Wilson WD, Stamatakis EA. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cereb Cortex. 2010;20(2):352–64.

    Article  PubMed  Google Scholar 

  247. Garrard P, Patterson K, Watson PC, Hodges JR. Category specific semantic loss in dementia of Alzheimer’s type. Functional-anatomical correlations from cross-sectional analyses. Brain. 1998;121(Pt 4):633–46.

    Article  PubMed  Google Scholar 

  248. Grossman M. Not all words are created equal. Category-specific deficits in central nervous system disease. Neurology. 1998;50(2):324–5.

    PubMed  CAS  Google Scholar 

  249. Grossman M, Robinson K, Biassou N, White-Devine T, D’Esposito M. Semantic memory in Alzheimer’s disease: representativeness, ontologic category, and material. Neuropsychology. 1998;12(1):34–42.

    Article  PubMed  CAS  Google Scholar 

  250. Woodard JL, Seidenberg M, Nielson KA, et al. Semantic memory activation in amnestic mild cognitive impairment. Brain. 2009;132(Pt 8):2068–78.

    Article  PubMed  CAS  Google Scholar 

  251. Gigi A, Babai R, Penker A, Hendler T, Korczyn AD. Prefrontal compensatory mechanism may enable normal semantic memory performance in mild cognitive impairment (MCI). J Neuroimaging. 2010;20(2):163–8.

    Article  PubMed  Google Scholar 

  252. Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage. 2000;11(3):179–87.

    Article  PubMed  CAS  Google Scholar 

  253. McGeown WJ, Shanks MF, Forbes-McKay KE, Venneri A. Patterns of brain activity during a semantic task differentiate normal aging from early Alzheimer’s disease. Psychiatry Res. 2009;173(3):218–27.

    Article  PubMed  Google Scholar 

  254. Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc. 1999;5(5):377–92.

    Article  PubMed  CAS  Google Scholar 

  255. Grossman M, Koenig P, Glosser G, et al. Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain. 2003;126(Pt 2):292–311.

    Article  PubMed  Google Scholar 

  256. Taler V, Risacher SL, West JD, et al. Differential neuroanatomical substrates of language performance by diagnostic group and task in the ADNI cohort. J Int Neuropsychol Soc. Submitted for publication.

    Google Scholar 

  257. Assaf M, Jagannathan K, Calhoun V, Kraut M, Hart Jr J, Pearlson G. Temporal sequence of hemispheric network activation during semantic processing: a functional network connectivity analysis. Brain Cogn. 2009;70(2):238–46.

    Article  PubMed  Google Scholar 

  258. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11(1):80–95.

    Article  PubMed  CAS  Google Scholar 

  259. Vitali P, Abutalebi J, Tettamanti M, et al. Generating animal and tool names: an fMRI study of effective connectivity. Brain Lang. 2005;93(1):32–45.

    Article  PubMed  Google Scholar 

  260. Adlam AL, Bozeat S, Arnold R, Watson P, Hodges JR. Semantic knowledge in mild cognitive impairment and mild Alzheimer’s disease. Cortex. 2006;42(5):675–84.

    Article  PubMed  Google Scholar 

  261. Duong A, Whitehead V, Hanratty K, Chertkow H. The nature of lexico-semantic processing deficits in mild cognitive impairment. Neuropsychologia. 2006;44(10):1928–35.

    Article  PubMed  Google Scholar 

  262. Mickes L, Wixted JT, Fennema-Notestine C, et al. Progressive impairment on neuropsychological tasks in a longitudinal study of preclinical Alzheimer’s disease. Neuropsychology. 2007;21(6):696–705.

    Article  PubMed  Google Scholar 

  263. Smith JA, Knight RG. Memory processing in Alzheimer’s disease. Neuropsychologia. 2002;40(6):666–82.

    Article  PubMed  Google Scholar 

  264. Lind J, Persson J, Ingvar M, et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain. 2006;129(Pt 5):1240–8.

    Article  PubMed  Google Scholar 

  265. McGeown WJ, Shanks MF, Venneri A. Prolonged cholinergic enrichment influences regional cortical activation in early Alzheimer’s disease. Neuropsychiatr Dis Treat. 2008;4(2):465–76.

    PubMed  Google Scholar 

  266. Mencl WE, Pugh KR, Shaywitz SE, et al. Network analysis of brain activations in working memory: behavior and age relationships. Microsc Res Tech. 2000;51(1):64–74.

    Article  PubMed  CAS  Google Scholar 

  267. Baddeley AD. Is working memory still working? Am Psychol. 2001;56(11):851–64.

    Article  PubMed  CAS  Google Scholar 

  268. Becker JT, Morris RG. Working memory(s). Brain Cogn. 1999;41:1–8.

    Article  PubMed  CAS  Google Scholar 

  269. Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7(9):415–23.

    Article  PubMed  Google Scholar 

  270. Baddeley A. Working memory. Curr Biol. 2010;20(4):R136–140.

    Article  PubMed  CAS  Google Scholar 

  271. Baddeley A. Working memory. C R Acad Sci III. 1998;321(2–3):167–73.

    PubMed  CAS  Google Scholar 

  272. Baddeley A. Working memory. Science. 1992;255(5044):556–9.

    Article  PubMed  CAS  Google Scholar 

  273. Cowan N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull. 1988;104(2):163–91.

    Article  PubMed  CAS  Google Scholar 

  274. Cowan N, Nugent LD, Elliott EM, Ponomarev I, Saults JS. The role of attention in the development of short-term memory: age differences in the verbal span of apprehension. Child Dev. 1999;70(5):1082–97.

    Article  PubMed  CAS  Google Scholar 

  275. D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):761–72.

    Article  PubMed  Google Scholar 

  276. Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science. 1998;279(5355):1347–51.

    Article  PubMed  CAS  Google Scholar 

  277. Awh E, Jonides J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci. 2001;5(3):119–26.

    Article  PubMed  Google Scholar 

  278. Curtis CE, Rao VY, D’Esposito M. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J Neurosci. 2004;24(16):3944–52.

    Article  PubMed  CAS  Google Scholar 

  279. Klein C, Fischer B, Hartnegg K, Heiss WH, Roth M. Optomotor and neuropsychological performance in old age. Exp Brain Res. 2000;135(2):141–54.

    Article  PubMed  CAS  Google Scholar 

  280. Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.

    Article  PubMed  CAS  Google Scholar 

  281. Davachi L, Maril A, Wagner AD. When keeping in mind supports later bringing to mind: neural markers of phonological rehearsal predict subsequent remembering. J Cogn Neurosci. 2001;13(8):1059–70.

    Article  PubMed  CAS  Google Scholar 

  282. Jonides J, Schumacher EH, Smith EE, et al. The role of parietal cortex in verbal working memory. J Neurosci. 1998;18(13):5026–34.

    PubMed  CAS  Google Scholar 

  283. Smith EE, Jonides J. Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA. 1998;95(20):12061–8.

    Article  PubMed  CAS  Google Scholar 

  284. Smith EE, Jonides J, Marshuetz C, Koeppe RA. Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA. 1998;95(3):876–82.

    Article  PubMed  CAS  Google Scholar 

  285. Druzgal TJ, D’Esposito M. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. J Cogn Neurosci. 2003;15(6):771–84.

    Article  PubMed  Google Scholar 

  286. Linden DE, Bittner RA, Muckli L, et al. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage. 2003;20(3):1518–30.

    Article  PubMed  Google Scholar 

  287. Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.

    Article  PubMed  Google Scholar 

  288. Ranganath C, DeGutis J, D’Esposito M. Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Brain Res Cogn Brain Res. 2004;20(1):37–45.

    Article  PubMed  Google Scholar 

  289. Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17(3):507–17.

    Article  PubMed  Google Scholar 

  290. D’Esposito M, Aguirre GK, Zarahn D, Ballard RK, Shin JL. Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res. 1998;7:1–13.

    Article  Google Scholar 

  291. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283(5408):1657–61.

    Article  PubMed  CAS  Google Scholar 

  292. Levy R, Goldman-Rakic PS. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res. 2000;133(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  293. Sala JB, Rama P, Courtney SM. Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory. Neuropsychologia. 2003;41:341–56.

    Article  PubMed  Google Scholar 

  294. D’Esposito M, Postle BR, Jonides J, Smith EE. The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proc Natl Acad Sci USA. 1999;96(13):7514–9.

    Article  PubMed  Google Scholar 

  295. Anders TR, Fozard JL, Lillyquist TD. Effects of age upon retrieval from short-term memory. Dev Psychol. 1972;6:214–7.

    Article  Google Scholar 

  296. VanderLinden M, Bredart S, Beerten A. Age-related differences in updating working memory. Br J Psychol Eng. 1994;85(Pt 1):145–52.

    Article  Google Scholar 

  297. Grady CL. Brain imaging and age-related changes in cognition. Exp Gerontol. 1998;33(7–8):661–73.

    Article  PubMed  CAS  Google Scholar 

  298. Mattay VS, Fera F, Tessitore A, et al. Neurophysiological correlates of age-related changes in working memory capacity. Neurosci Lett. 2006;392(1–2):32–7.

    Article  PubMed  CAS  Google Scholar 

  299. Mitchell KJ, Johnson MK, Raye CL, D’Esposito M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cogn Brain Res. 2000;10(1–2):197–206.

    Article  CAS  Google Scholar 

  300. Park DC, Welsh RC, Marshuetz C, et al. Working memory for complex scenes: age differences in frontal and hippocampal activations. J Cogn Neurosci. 2003;15(8):1122–34.

    Article  PubMed  Google Scholar 

  301. Grady CL, Yu H, Alain C. Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cereb Cortex. 2008;18(1):189–99.

    Article  PubMed  Google Scholar 

  302. Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK. Attentional control in Alzheimer’s disease. Brain. 2001;124:1492–508.

    Article  PubMed  CAS  Google Scholar 

  303. Lim HK, Juh R, Pae CU, et al. Altered verbal working memory process in patients with Alzheimer’s disease: an fMRI investigation. Neuropsychobiology. 2008;57(4):181–7.

    Article  PubMed  Google Scholar 

  304. Peters JC, Goebel R, Roelfsema PR. Remembered but unused: the accessory items in working memory that do not guide attention. J Cogn Neurosci. 2009;21(6):1081–91.

    Article  PubMed  Google Scholar 

  305. Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol. 2006;16(1):193–206.

    Article  PubMed  Google Scholar 

  306. Bokde AL, Karmann M, Born C, et al. Altered brain activation during a verbal working memory task in subjects with amnestic mild cognitive impairment. J Alzheimers Dis. 2010;21(1):103–118.

    Google Scholar 

  307. Saykin AJ, Wishart HA, Rabin LA, et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain. 2004;127(Pt 7):1574–83.

    Article  PubMed  Google Scholar 

  308. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology. 2003;60(12):1904–8.

    PubMed  CAS  Google Scholar 

  309. Berlingeri M, Bottini G, Basilico S, et al. Anatomy of the episodic buffer: a voxel-based morphometry study in patients with dementia. Behav Neurol. 2008;19(1–2):29–34.

    PubMed  CAS  Google Scholar 

  310. Luck D, Danion JM, Marrer C, Pham BT, Gounot D, Foucher J. The right parahippocampal gyrus contributes to the formation and maintenance of bound information in working memory. Brain Cogn. 2010;72(2):255–63.

    Article  PubMed  Google Scholar 

  311. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working memory performance. J Neurosci. 2006;26(51):13338–43.

    Article  PubMed  CAS  Google Scholar 

  312. Protzner AB, Cortese F, Alain C, McIntosh AR. The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks. Neuropsychologia. 2009;47(8–9):1954–63.

    Article  PubMed  Google Scholar 

  313. Rissman J, Gazzaley A, D’Esposito M. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cereb Cortex. 2008;18(7):1618–29.

    Article  PubMed  Google Scholar 

  314. Anticevic A, Repovs G, Shulman GL, Barch DM. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. Neuroimage. 2010;49(3):2638–48.

    Article  PubMed  Google Scholar 

  315. Esposito F, Aragri A, Latorre V, et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol. 2009;147(1–2):11–20.

    PubMed  CAS  Google Scholar 

  316. Grady CL, Protzner AB, Kovacevic N, et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex. 2010;20(6):1432–47.

    Article  PubMed  Google Scholar 

  317. Li Z, Moore AB, Tyner C, Hu X. Asymmetric connectivity reduction and its relationship to “HAROLD” in aging brain. Brain Res. 2009;1295:149–58.

    Article  PubMed  CAS  Google Scholar 

  318. Sambataro F, Murty VP, Callicott JH, et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging. 2010;31(5):839–52.

    Article  PubMed  Google Scholar 

  319. Saunders NL, Summers MJ. Attention and working memory deficits in mild cognitive impairment. J Clin Exp Neuropsychol. 2010;32(4):350–7.

    Article  PubMed  Google Scholar 

  320. Filbey FM, Slack KJ, Sunderland TP, Cohen RM. Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEepsilon4 in young healthy adults. Neuroreport. 2006;17(15):1585–90.

    Article  PubMed  Google Scholar 

  321. Wishart HA, Saykin AJ, Rabin LA, et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry. 2006;163(9):1603–10.

    Article  PubMed  Google Scholar 

  322. Craig MC, Brammer M, Maki PM, et al. The interactive effect of acute ovarian suppression and the cholinergic system on visuospatial working memory in young women. Psychoneuroendocrinology. 2010;35(7):987–1000.

    Article  PubMed  CAS  Google Scholar 

  323. Dumas JA, Saykin AJ, McDonald BC, McAllister TW, Hynes ML, Newhouse PA. Nicotinic versus muscarinic blockade alters verbal working memory-related brain activity in older women. Am J Geriatr Psychiatry. 2008;16(4):272–82.

    Article  PubMed  Google Scholar 

  324. Goekoop R, Rombouts SA, Jonker C, et al. Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage. 2004;23(4):1450–9.

    Article  PubMed  Google Scholar 

  325. D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4(11):863–72.

    Article  PubMed  CAS  Google Scholar 

  326. Tekes A, Mohamed MA, Browner NM, Calhoun VD, Yousem DM. Effect of age on visuomotor functional MR imaging. Acad Radiol. 2005;12(6):739–45.

    Article  PubMed  Google Scholar 

  327. D’Esposito M, Zarahn E, Aguirre GK, Rympa B. The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response. Neuroimage. 1999;10:6–14.

    Article  PubMed  Google Scholar 

  328. Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13(1):161–75.

    Article  PubMed  CAS  Google Scholar 

  329. Taoka T, Iwasaki S, Uchida H, et al. Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr. 1998;22(4):514–7.

    Article  PubMed  CAS  Google Scholar 

  330. Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, et al. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp. 2002;16(1):14–23.

    Article  PubMed  Google Scholar 

  331. Ross MH, Yurgelun-Todd DA, Renshaw PF, et al. Age-related reduction in functional MRI response to photic stimulation. Neurology. 1997;48(1):173–6.

    PubMed  CAS  Google Scholar 

  332. Ward NS, Frackowiak RS. Age-related changes in the neural correlates of motor performance. Brain. 2003;126(Pt 4):873–88.

    Article  PubMed  CAS  Google Scholar 

  333. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci. 2000;12 Suppl 2:24–34.

    Article  PubMed  Google Scholar 

  334. Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage. 1997;5(4 Pt 1):261–70.

    Article  PubMed  CAS  Google Scholar 

  335. Price CJ, Moore CJ, Friston KJ. Subtractions, conjunctions, and interactions in experimental design of activation studies. Hum Brain Mapp. 1997;5(4):264–72.

    Article  PubMed  CAS  Google Scholar 

  336. McClearn GE, Johansson B, Berg S, et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science. 1997;276(5318):1560–3.

    Article  PubMed  CAS  Google Scholar 

  337. Rasch B, Papassotiropoulos A, de Quervain DF. Imaging genetics of cognitive functions: focus on episodic memory. Neuroimage. 2010;53(3):870–7.

    Google Scholar 

  338. Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.

    Article  PubMed  CAS  Google Scholar 

  339. Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23(17):6690–4.

    PubMed  CAS  Google Scholar 

  340. Hashimoto R, Moriguchi Y, Yamashita F, et al. Dose-dependent effect of the Val66Met polymorphism of the brain-derived neurotrophic factor gene on memory-related hippocampal activity. Neurosci Res. 2008;61(4):360–7.

    Article  PubMed  CAS  Google Scholar 

  341. Sambataro F, Murty VP, Lemaitre HS, et al. BDNF modulates normal human hippocampal ageing [corrected]. Mol Psychiatry. 2010;15(2):116–8.

    Article  PubMed  CAS  Google Scholar 

  342. Lachman HM, Morrow B, Shprintzen R, et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet. 1996;67(5):468–72.

    Article  PubMed  CAS  Google Scholar 

  343. Bertolino A, Blasi G, Latorre V, et al. Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci. 2006;26(15):3918–22.

    Article  PubMed  CAS  Google Scholar 

  344. Bertolino A, Rubino V, Sambataro F, et al. Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry. 2006;60(11):1250–8.

    Article  PubMed  CAS  Google Scholar 

  345. de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson LG. COMT gene polymorphism is associated with declarative memory in adulthood and old age. Behav Genet. 2004;34(5):533–9.

    Article  PubMed  Google Scholar 

  346. Reuter M, Montag C, Peters K, Kocher A, Kiefer M. The modulatory influence of the functional COMT Val158Met polymorphism on lexical decisions and semantic priming. Front Hum Neurosci. 2009;3:20.

    Article  PubMed  CAS  Google Scholar 

  347. Sambataro F, Reed JD, Murty VP, et al. Catechol-O-methyltransferase valine(158)methionine polymorphism modulates brain networks underlying working memory across adulthood. Biol Psychiatry. 2009;66(6):540–8.

    Article  PubMed  CAS  Google Scholar 

  348. Schott BH, Seidenbecher CI, Fenker DB, et al. The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci. 2006;26(5):1407–17.

    Article  PubMed  CAS  Google Scholar 

  349. Huentelman MJ, Papassotiropoulos A, Craig DW, et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum Mol Genet. 2007;16(12):1469–77.

    Article  PubMed  CAS  Google Scholar 

  350. Buchmann A, Mondadori CR, Hanggi J, et al. Prion protein M129V polymorphism affects retrieval-related brain activity. Neuropsychologia. 2008;46(9):2389–402.

    Article  PubMed  Google Scholar 

  351. Papassotiropoulos A, Stephan DA, Huentelman MJ, et al. Common Kibra alleles are associated with human memory performance. Science. 2006;314(5798):475–8.

    Article  PubMed  CAS  Google Scholar 

  352. Thimm M, Krug A, Markov V, et al. The impact of dystrobrevin-binding protein 1 (DTNBP1) on neural correlates of episodic memory encoding and retrieval. Hum Brain Mapp. 2010;31(2):203–9.

    PubMed  Google Scholar 

  353. Owen MJ, Williams NM, O’Donovan MC. Dysbindin-1 and schizophrenia: from genetics to neuropathology. J Clin Invest. 2004;113(9):1255–7.

    PubMed  CAS  Google Scholar 

  354. Krug A, Markov V, Krach S, et al. The effect of Neuregulin 1 on neural correlates of episodic memory encoding. Neuroimage. 2010;53(3):985–91.

    Google Scholar 

  355. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71(4):877–92.

    Article  PubMed  Google Scholar 

  356. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287–303.

    Article  PubMed  CAS  Google Scholar 

  357. Saykin AJ, Shen L, Foroud TM, et al. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement. 2010;6(3):265–73.

    Article  PubMed  CAS  Google Scholar 

  358. Stein JL, Hua X, Morra JH, et al. Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. Neuroimage. 2010;51(2):542–54.

    Article  PubMed  CAS  Google Scholar 

  359. Stein JL, Hua X, Lee S, et al. Voxelwise genome-wide association study (vGWAS). Neuroimage. 2010;53(3):1160–74.

    Google Scholar 

  360. Shen L, Kim S, Risacher SL, et al. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage. 2010;53(3):1051–63.

    Google Scholar 

  361. Potkin SG, Guffanti G, Lakatos A, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS ONE. 2009;4(8):e6501.

    Article  PubMed  CAS  Google Scholar 

  362. Hedden T, Van Dijk KR, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29(40):12686–94.

    Article  PubMed  CAS  Google Scholar 

  363. Restom K, Bangen KJ, Bondi MW, Perthen JE, Liu TT. Cerebral blood flow and BOLD responses to a memory encoding task: a comparison between healthy young and elderly adults. Neuroimage. 2007;37(2):430–9.

    Article  PubMed  Google Scholar 

  364. Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–7.

    Article  PubMed  CAS  Google Scholar 

  365. Sperling RA, Laviolette PS, O’Keefe K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178–88.

    Article  PubMed  CAS  Google Scholar 

  366. Zhang K, Johnson B, Pennell D, Ray W, Sebastianelli W, Slobounov S. Are functional deficits in concussed individuals consistent with white matter structural alterations: combined fMRI & DTI study. Exp Brain Res. 2010;204(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  367. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.

    Article  PubMed  CAS  Google Scholar 

  368. Hoffmann MB, Stadler J, Kanowski M, Speck O. Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T. Clin Neurophysiol. 2009;120(1):108–16.

    Article  PubMed  Google Scholar 

  369. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol. 2010;103(5):2544–56.

    Article  PubMed  CAS  Google Scholar 

  370. Bondi MW. Genetic and brain imaging contributions to neuropsychological functioning in preclinical dementia. J Int Neuropsychol Soc. 2002;8:915–7.

    Article  PubMed  Google Scholar 

  371. Shoghi-Jadid K, Small GW, Agdeppa ED, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):24–35.

    PubMed  Google Scholar 

  372. Klunk WE, Lopresti BJ, Ikonomovic MD, et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci. 2005;25(46):10598–606.

    Article  PubMed  CAS  Google Scholar 

  373. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.

    Article  PubMed  CAS  Google Scholar 

  374. Burggren AC, Bookheimer SY. Structural and functional neuroimaging in Alzheimer’s disease: an update. Curr Top Med Chem. 2002;2(4):385–93.

    Article  PubMed  CAS  Google Scholar 

  375. Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9(5):387–98.

    Article  PubMed  CAS  Google Scholar 

  376. Grady CL. Cognitive neuroscience of aging. Ann NY Acad Sci. 2008;1124:127–44.

    Article  PubMed  Google Scholar 

  377. Hedden T, Gabrieli JD. Healthy and pathological processes in adult development: new evidence from neuroimaging of the aging brain. Curr Opin Neurol. 2005;18(6):740–7.

    Article  PubMed  Google Scholar 

  378. Langley LK, Madden DJ. Functional neuroimaging of memory: implications for cognitive aging. Microsc Res Tech. 2000;51(1):75–84.

    Article  PubMed  CAS  Google Scholar 

  379. Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia. 2008;46(6):1624–35.

    Article  PubMed  Google Scholar 

  380. Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol. 2009;21(1):63–75.

    PubMed  Google Scholar 

  381. Drzezga A. Concept of functional imaging of memory decline in Alzheimer’s disease. Methods. 2008;44(4):304–14.

    Article  PubMed  CAS  Google Scholar 

  382. Han SD, Bangen KJ, Bondi MW. Functional magnetic resonance imaging of compensatory neural recruitment in aging and risk for Alzheimer’s disease: review and recommendations. Dement Geriatr Cogn Disord. 2009;27(1):1–10.

    Article  PubMed  Google Scholar 

  383. Ries ML, Carlsson CM, Rowley HA, et al. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc. 2008;56(5):920–34.

    Article  PubMed  Google Scholar 

  384. Sperling RA, Dickerson BC, Pihlajamaki M, et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 2010;12(1):27–43.

    Article  PubMed  CAS  Google Scholar 

  385. Wierenga CE, Bondi MW. Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychol Rev. 2007;17(2):127–43.

    Article  PubMed  Google Scholar 

  386. Cappa SF. Imaging studies of semantic memory. Curr Opin Neurol. 2008;21(6):669–75.

    Article  PubMed  Google Scholar 

  387. Wingfield A, Grossman M. Language and the aging brain: patterns of neural compensation revealed by functional brain imaging. J Neurophysiol. 2006;96(6):2830–9.

    Article  PubMed  Google Scholar 

  388. Dickerson BC. Functional magnetic resonance imaging of cholinergic modulation in mild cognitive impairment. Curr Opin Psychiatry. 2006;19(3):299–306.

    Article  PubMed  Google Scholar 

  389. Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424–30.

    Article  PubMed  Google Scholar 

  390. Rypma B, D’Esposito M. Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci. 2000;3(5):509–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by the following grants from: the National Institutes of Health (CTSI Training Grant, TL1 RR025759 to SLR; NIA R01 AG19771 and NIH R01 CA101318 to AJS; Indiana Alzheimer’s Disease Center, P30 AG10133-18S1 Core Supplement to Drs. B. Ghetti and AJS); the Alzheimer’s Disease Neuroimaging Initiative (NIH U01 AG024904 and RC2 AG036535-01); the Indiana Economic Development Corporation (IEDC #87884 to AJS); and the Alzheimer’s Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Saykin PsyD, ABPP/CN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Risacher, S.L., Wishart, H.A., Saykin, A.J. (2011). Functional MRI Studies of Memory in Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics