Skip to main content

Synaptic Transmission of Pain in the Developing Spinal Cord

Fast Synaptic Transmission in the Dorsal Horn

  • Chapter
  • First Online:
Synaptic Plasticity in Pain

Abstract

The altered nociceptive behaviour of neonatal animals implies that there are underlying differences in pain transmission between young and mature individuals. One important location where these differences have been shown to occur is at the level of the spinal cord dorsal horn where sensory information from the periphery is first integrated at the synaptic level. The maturation of synaptic transmission in this region will therefore have a profound effect on pain behaviour. In addition, the development of spinal pain processing is modulated by incoming sensory activity and immature dorsal horn synapses play a key role in postnatal activity-dependent shaping of pain circuitry. This chapter will explore the maturation of dorsal horn synaptic transmission at anatomical, molecular and functional levels. The competing forces of excitatory and inhibitory neurotransmission will be focussed upon separately and then finally the integration of these synaptic drives will be discussed in relation to the emergence of mature spinal pain processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal SG and Evans RH (1986) The primary afferent depolarizing action of kainate in the rat. Br J Pharmacol. 87:345–355

    PubMed  CAS  Google Scholar 

  • Aguayo LG, van Zundert B, Tapia JC et al (2004) Changes on the properties of glycine receptors during neuronal development. Brain Research Reviews. 47:33–45

    Article  PubMed  CAS  Google Scholar 

  • Akerman CJ and Cline HT (2006) Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. J Neurosci. 26:5117–5130

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque C, Lee CJ, Jackson AC et al (1999) Subpopulations of GABAergic and non-GABAergic rat dorsal horn neurons express Ca2+-permeable AMPA receptors. Eur J Neurosci. 11:2758–2766

    Article  PubMed  CAS  Google Scholar 

  • Baba H, Doubell TP, Moore KA et al (2000) Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord. J Neurophysiol. 83:955–962

    PubMed  CAS  Google Scholar 

  • Baccei ML, Bardoni R, and Fitzgerald M (2003) Development of nociceptive synaptic inputs to the neonatal rat dorsal horn: glutamate release by capsaicin and menthol. J Physiol. 549:231–242

    Article  PubMed  CAS  Google Scholar 

  • Baccei ML and Fitzgerald M (2004) Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci. 24:4749–4757

    Article  PubMed  CAS  Google Scholar 

  • Baccei ML and Fitzgerald M (2005) Intrinsic firing properties of developing rat superficial dorsal horn neurons. Neuroreport. 16:1325–1328

    Article  PubMed  Google Scholar 

  • Bardoni R, Magherini PC, and MacDermott AB (1998) NMDA EPSCs at glutamatergic synapses in the spinal cord dorsal horn of the postnatal rat. J Neurosci. 18:6558–6567

    PubMed  CAS  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW et al (1998) International Union of Pharmacology. XV. Subtypes of gamma – Aminobutyric AcidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev. 50:291–314

    PubMed  CAS  Google Scholar 

  • Beggs S, Torsney C, Drew LJ et al (2002) The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. Eur J Neurosci. 16:1249–1258

    Article  PubMed  Google Scholar 

  • Ben Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 3:728–739

    Article  PubMed  CAS  Google Scholar 

  • Ben Ari Y, Cherubini E, Corradetti R et al (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol. 416:303–325

    PubMed  CAS  Google Scholar 

  • Berki AC, O'Donovan MJ, and Antal M (1995) Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol. 362:583–596

    Article  PubMed  CAS  Google Scholar 

  • Bice TN and Beal JA (1997a) Quantitative and neurogenic analysis of neurons with supraspinal projections in the superficial dorsal horn of the rat lumbar spinal cord. J Comp Neurol. 388:565–574

    Article  PubMed  CAS  Google Scholar 

  • Bice TN and Beal JA (1997b) Quantitative and neurogenic analysis of the total population and subpopulations of neurons defined by axon projection in the superficial dorsal horn of the rat lumbar spinal cord. J Comp Neurol. 388:550–564

    Article  PubMed  CAS  Google Scholar 

  • Bremner L, Fitzgerald M, and Baccei M (2006) Functional GABAA-receptor-mediated inhibition in the neonatal dorsal horn. J Neurophysiol. 95:3893–3897

    Article  PubMed  CAS  Google Scholar 

  • Bremner LR and Fitzgerald M (2008) Postnatal tuning of cutaneous inhibitory receptive fields in the rat. J Physiol. 586:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Brown KM, Wrathall JR, Yasuda RP et al (2002) Quantitative measurement of glutamate receptor subunit protein expression in the postnatal rat spinal cord. Dev Brain Res. 137:127–133

    Article  CAS  Google Scholar 

  • Brown TH, Chapman PF, Kairiss EW et al (1988) Long-term synaptic potentiation. Science. 242:724–728

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH et al (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron. 8:189–198

    Article  PubMed  CAS  Google Scholar 

  • Chery N and De Koninck Y (1999) Junctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord. J Neurosci. 19:7342–7355

    PubMed  CAS  Google Scholar 

  • Cordero-Erausquin M, Coull JAM, Boudreau D et al (2005) Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. J Neurosci. 25:9613–9623

    Article  PubMed  CAS  Google Scholar 

  • Cronin JN, Bradbury EJ, and Lidierth M (2004) Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity. Pain. 112:156–163

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich I, Lohrke S, and Friauf E (1999) Shift from depolarizing to hyperpolarizing glycine action in rat auditory neurones is due to age-dependent Cl- regulation. J Physiol. 520 Pt 1:121–137.

    Google Scholar 

  • Ekholm J (1967) Postnatal changes in cutaneous reflexes and in the discharge pattern of cutaneous and articular sense organs. A morphological and physiological study in the cat. Acta Physiol Scand Suppl. 297:1–130.:1–130

    CAS  Google Scholar 

  • Engelman HS, Allen TB, and MacDermott AB (1999) The Distribution of Neurons Expressing Calcium-Permeable AMPA Receptors in the Superficial Laminae of the Spinal Cord Dorsal Horn. J Neurosci. 19:2081–2089

    PubMed  CAS  Google Scholar 

  • Erlander MG, Tillakaratne NJK, Feldblum S et al (1991) Two genes encode distinct glutamate decarboxylases. Neuron. 7:91–100

    Article  PubMed  CAS  Google Scholar 

  • Falcon M, Guendellman D, Stolberg A et al (1996) Development of thermal nociception in rats. Pain. 67:203–208

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald M and Gibson S (1984) The postnatal physiological and neurochemical development of peripheral sensory C fibres. Neuroscience. 13:933–944

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald M, Shaw A, and MacIntosh N (1988) Postnatal development of the cutaneous flexor reflex: comparative study of preterm infants and newborn rat pups. Dev Med Child Neurol. 30:520–526

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald M and Swett J (1983) The termination pattern of sciatic nerve afferents in the substantia gelatinosa of neonatal rats. Neurosci Lett. 43:149–154

    Article  PubMed  CAS  Google Scholar 

  • Gasnier B (2000) The loading of neurotransmitters into synaptic vesicles. Biochimie. 82:327–337

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez DL, Fuchs JL, and Droge MH (1993) Distribution of NMDA receptor binding in developing mouse spinal cord. Neurosci Lett. 151:134–137

    Article  PubMed  CAS  Google Scholar 

  • Granmo M, Petersson P, and Schouenborg J (2008) Action-based body maps in the spinal cord emerge from a transitory floating organization. J Neurosci. 28:5494–5503

    Article  PubMed  CAS  Google Scholar 

  • Green GM and Gibb AJ (2001) Characterization of the single-channel properties of NMDA receptors in laminae I and II of the dorsal horn of neonatal rat spinal cord. Eur J Neurosci. 14:1590–1602

    Article  PubMed  CAS  Google Scholar 

  • Gu X and Spitzer NC (1993) Low-threshold Ca2+ current and its role in spontaneous elevations of intracellular Ca2+ in developing Xenopus neurons. J Neurosci. 13:4936–4948

    PubMed  CAS  Google Scholar 

  • Gulledge AT and Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron. 37:299–309

    Article  PubMed  CAS  Google Scholar 

  • Harvey RJ, Depner UB, Wassle H et al (2004) GlyR {alpha}3: An essential target for spinal PGE2-mediated inflammatory pain sensitization. Science. 304:884–887

    Article  PubMed  CAS  Google Scholar 

  • Hathway G, Harrop E, Baccei M et al (2006) A postnatal switch in GABAergic control of spinal cutaneous reflexes. Eur J Neurosci. 23:112–118

    Article  PubMed  Google Scholar 

  • Hori Y and Kanda K (1994) Developmental alterations in NMDA receptor-mediated [Ca2+]i elevation in substantia gelatinosa neurons of neonatal rat spinal cord. Brain Res Dev Brain Res. 80:141–148

    Article  PubMed  CAS  Google Scholar 

  • Hosl K, Reinold H, Harvey RJ et al (2006) Spinal prostaglandin E receptors of the EP2 subtype and the glycine receptor [alpha]3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection. Pain. 126:46–53

    Article  PubMed  Google Scholar 

  • Hossaini M, French PJ, and Holstege JC (2007) Distribution of glycinergic neuronal somata in the rat spinal cord. Brain Res. 1142:61–69

    Article  PubMed  CAS  Google Scholar 

  • Ingram RA, Fitzgerald M, and Baccei ML (2008) Developmental changes in the fidelity and short term plasticity of GABAergic synapses in the neonatal rat dorsal horn. J Neurophysiol. 99:3144–3150

    Article  PubMed  CAS  Google Scholar 

  • Inquimbert P, Rodeau JL, and Schlichter R (2007) Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III–IV of the young rat spinal cord. Eur J Neurosci. 26:2940–2949

    Article  PubMed  Google Scholar 

  • Isaac JT, Nicoll RA, and Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron. 15:427–434

    Article  PubMed  CAS  Google Scholar 

  • Jackman A and Fitzgerald M (2000) Development of peripheral hindlimb and central spinal cord innervation by subpopulations of dorsal root ganglion cells in the embryonic rat. J Comp Neurol. 418:281–298

    Article  Google Scholar 

  • Jakowec MW, Fox AJ, Martin LJ et al (1995a) Quantitative and qualitative changes in AMPA receptor expression during spinal cord development. Neuroscience. 67:893–907

    Article  PubMed  CAS  Google Scholar 

  • Jakowec MW, Yen L, and Kalb RG (1995b) In situ hybridization analysis of AMPA receptor subunit gene expression in the developing rat spinal cord. Neuroscience. 67:909–920

    Article  PubMed  CAS  Google Scholar 

  • Jean-Xavier C, Mentis GZ, O'Donovan MJ et al (2007) Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord. PNAS. 104:11477–11482

    Article  PubMed  CAS  Google Scholar 

  • Jennings E and Fitzgerald M (1996) C-fos can be induced in the neonatal rat spinal cord by both noxious and innocuous peripheral stimulation. Pain. 68:301–306

    Article  PubMed  CAS  Google Scholar 

  • Jennings E and Fitzgerald M (1998) Postnatal changes in responses of rat dorsal horn cells to afferent stimulation: a fibre-induced sensitization. J Physiol. 509:859–868

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Bischofberger J, and Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science. 281:419–424

    Article  PubMed  CAS  Google Scholar 

  • Kato G, Kawasaki Y, Ji RR et al (2007) Differential wiring of local excitatory and inhibitory synaptic inputs to islet cells in rat spinal lamina II demonstrated by laser scanning photostimulation. J Physiol (Lond). 580:815–833

    Article  CAS  Google Scholar 

  • Keller AF, Breton JD, Schlichter R et al (2004) Production of 5alpha-reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J Neurosci. 24:907–915

    Article  PubMed  CAS  Google Scholar 

  • Keller AF, Coull JA, Chery N et al (2001) Region-specific developmental specialization of GABA-glycine cosynapses in laminas I–II of the rat spinal dorsal horn. J Neurosci. 21:7871–7880

    PubMed  CAS  Google Scholar 

  • Kerchner GA, Wilding TJ, Li P et al (2001) Presynaptic kainate receptors regulate spinal sensory transmission. J Neurosci. 21:59–66

    PubMed  CAS  Google Scholar 

  • Kirsch J, Wolters I, Triller A et al (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature. 366:745–748

    Article  PubMed  CAS  Google Scholar 

  • Kitao Y, Robertson B, Kudo M et al (1996) Neurogenesis of subpopulations of rat lumbar dorsal root ganglion neurons including neurons projecting to the dorsal column nuclei. J Comp Neurol. 371:249–257

    Article  PubMed  CAS  Google Scholar 

  • Knabl J, Witschi R, Hosl K et al (2008) Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 451:330–334

    Article  PubMed  CAS  Google Scholar 

  • Koch SC, Fitzgerald M, and Hathway GJ (2008) Midazolam potentiates nociceptive behavior, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology. 108:122–129

    Article  PubMed  CAS  Google Scholar 

  • Lee CJ, Kong H, Manzini MC et al (2001) Kainate receptors expressed by a subpopulation of developing nociceptors rapidly switch from high to low Ca2+ permeability. J Neurosci. 21:4572–4581

    PubMed  CAS  Google Scholar 

  • Legendre P (2001) The glycinergic inhibitory synapse. Cell Mol Life Sci. 58:760–793

    Article  PubMed  CAS  Google Scholar 

  • Li P and Zhuo M (1998) Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature. 393:695–698

    Article  PubMed  CAS  Google Scholar 

  • Li P, Wilding TJ, Kim SJ et al (1999) Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature. 397:161–164

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Behar T, and Barker JL (1992) Transient expression of GABA immunoreactivity in the developing rat spinal cord. J Comp Neurol. 325:271–290

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Saunders PA, Somogyi R et al (1993) Ontogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J Comp Neurol. 338:337–359

    Article  PubMed  CAS  Google Scholar 

  • Malosio ML, Marqueze-Pouey B, Kuhse J et al (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J. 10:2401–2409

    PubMed  CAS  Google Scholar 

  • Marti E, Gibson SJ, Polak JM et al (1987) Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin. J Comp Neurol. 266:332–359

    Article  PubMed  CAS  Google Scholar 

  • Matzenbach B, Maulet Y, Sefton L et al (1994) Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. J Biol Chem. 269:2607–2612

    CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P et al (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 307:462–465

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P and Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opinion Pharmacol. 7:39–47

    Article  CAS  Google Scholar 

  • Park JS, Nakatsuka T, Nagata K et al (1999) Reorganization of the primary afferent termination in the rat spinal dorsal horn during post-natal development. Brain Res Dev Brain Res. 113:29–36

    Article  PubMed  CAS  Google Scholar 

  • Philpot BD, Sekhar AK, Shouval HZ et al (2001) Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex. Neuron. 29:157–169

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli D, Ribeiro-da-Silva A, and Coimbra A (1989) Postnatal maturation of primary afferent terminations in the substantia gelatinosa of the rat spinal cord. An electron microscopic study. Brain Res. 491:33–44

    Article  PubMed  CAS  Google Scholar 

  • Poyatos I, Ponce J, Aragon C et al (1997) The glycine transporter GLYT2 is a reliable marker for glycine-immunoreactive neurons. Brain Res Mol Brain Res. 49:63–70

    Article  PubMed  CAS  Google Scholar 

  • Racz I, Schutz B, Abo-Salem OM et al (2005) Visceral, inflammatory and neuropathic pain in glycine receptor alpha 3-deficient mice. Neuroreport. 16:2025–2028

    Article  PubMed  CAS  Google Scholar 

  • Reichling DB, Kyrozis A, Wang J et al (1994) Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J Physiol. 476:411–421

    PubMed  CAS  Google Scholar 

  • Rivera C, Voipio J, Payne JA et al (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 397:251–255

    Article  PubMed  CAS  Google Scholar 

  • Schaffner AE, Behar T, Nadi S et al (1993) Quantitative analysis of transient GABA expression in embryonic and early postnatal rat spinal cord neurons. Brain Res Dev Brain Res. 72:265–276

    Article  PubMed  CAS  Google Scholar 

  • Schlichter R, Keller AF, De Roo M et al (2006) Fast nongenomic effects of steroids on synaptic transmission and role of endogenous neurosteroids in spinal pain pathways. J Mol Neurosci. 28:33–51

    Article  PubMed  CAS  Google Scholar 

  • Somogyi R, Wen X, Ma W et al (1995) Developmental kinetics of GAD family mRNAs parallel neurogenesis in the rat spinal cord. J Neurosci. 15:2575–2591

    PubMed  CAS  Google Scholar 

  • Soyguder Z, Schmidt HH, and Morris R (1994) Postnatal development of nitric oxide synthase type 1 expression in the lumbar spinal cord of the rat: a comparison with the induction of c-fos in response to peripheral application of mustard oil. Neurosci Lett. 180:188–192

    Article  PubMed  CAS  Google Scholar 

  • Stegenga SL and Kalb RG (2001) Developmental regulation of N-methyl – aspartate- and kainate-type glutamate receptor expression in the rat spinal cord. Neuroscience. 105:499–507

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Momiyama A, Hirai K et al (1992) Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron. 9:1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Todd AJ and Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol. 296:496–505

    Article  PubMed  CAS  Google Scholar 

  • Torseney C and Fitzgerald M (2002) Age-dependent effects of peripheral inflammation on the electrophysiological properties of neonatal rat dorsal horn neurons. J Neurophysiol. 87:1311–1317

    PubMed  Google Scholar 

  • Torsney C, Meredith-Middleton J, and Fitzgerald M (2000) Neonatal capsaicin treatment prevents the normal postnatal withdrawal of A fibres from lamina II without affecting fos responses to innocuous peripheral stimulation. Brain Res Dev Brain Res. 121:55–65

    Article  PubMed  CAS  Google Scholar 

  • Tran TS, Alijani A, and Phelps PE (2003) Unique developmental patterns of GABAergic neurons in rat spinal cord. J Comp Neurol. 456:112–126

    Article  PubMed  Google Scholar 

  • Waldenstrom A, Thelin J, Thimansson E et al (2003) Developmental learning in a pain-related system: evidence for a cross-modality mechanism. J Neurosci. 23:7719–7725

    PubMed  Google Scholar 

  • Wang J, Reichling DB, Kyrozis A et al (1994) Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci. 6:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Watanabe E and Akagi H (1995) Distribution patterns of mRNAs encoding glycine receptor channels in the developing rat spinal cord. Neurosci Res. 23:377–382

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Mishina M, and Inoue Y (1994) Distinct spatiotemporal distributions of the N-methyl-D-aspartate receptor channel subunit mRNAs in the mouse cervical cord. J Comp Neurol. 345:314–319

    Article  PubMed  CAS  Google Scholar 

  • Woodbury CJ and Koerber HR (2003) Widespread projections from myelinated nociceptors throughout the substantia gelatinosa provide novel insights into neonatal hypersensitivity. J Neurosci. 23:601–610

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. Ingram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ingram, R.A., Baccei, M.L., Fitzgerald, M. (2009). Synaptic Transmission of Pain in the Developing Spinal Cord. In: Malcangio, M. (eds) Synaptic Plasticity in Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0226-9_4

Download citation

Publish with us

Policies and ethics