Skip to main content

MAP Kinase and Cell Signaling in DRG Neurons and Spinal Microglia in Neuropathic Pain

  • Chapter
  • First Online:
Book cover Synaptic Plasticity in Pain
  • 841 Accesses

Abstract

Nerve injury is known to produce neuropathic pain by inducing changes not only in neurons such as primary sensory neurons in the dorsal root ganglion (DRG), but also in non-neuronal cells such as microglia in the spinal cord. Increasing evidence suggests that mitogen-activated protein kinases (MAPKs) play important roles in neuropathic pain sensitization by regulating intracellular signaling in both DRG neurons and spinal cord microglia. Intrathecal injection of MAPK inhibitors for the extracellular signal-regulated kinase (ERK), p38, or c-Jun N-terminal kinase (JNK) pathway targets the MAPK pathways at both DRG and spinal cord levels and has been shown to attenuate neuropathic pain in different animal models. In particular, activation of p38 in DRG neurons by nerve growth factor and cytokines contributes to thermal hypersensitivity by increasing the expression and activity of sodium channels (e.g., Nav1.7/Nav1.8) and TRP channels (e.g., TRPV1 and TRPA1). Activation of p38 in spinal microglia by chemokines, cytokines, ATP, and proteases also contributes to neuropathic pain symptoms such as mechanical allodynia. Thus, activation of MAPK pathways in both neurons and glia and in both the peripheral and central nervous system is important for neuropathic pain sensitization, and blocking these pathways at multiple sites may lead to effective therapies for neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanic acid

BDNF:

brain-derived neurotrophic factor

CatS:

cysteine protease cathepsin S

DRG:

dorsal root ganglion

GABA:

gamma aminobutyric acid

ERK:

extracelllular signal-regulated kinase

bFGF:

basic fibroblast growth factor

FKN:

fractalkine

IL-1:

Interleukin-1

JNK:

c-Jun-N-terminal kinase

MAPK:

mitogen-activated protein kinases

MCP-1:

monocyte chemoattractant protein-1

NMDA:

N-methyl-d-aspartate

MMP-9:

matrix metalloproteinase-9

NGF:

nerve growth factor

NT-3:

neurotrophin 3

PGE2:

prostaglandin E2

PTN:

pain transmission neurons STZ, streptozotocin

TNF:

tumor necrosis factor

TRP:

transient receptor potential

References

  • Abbadie, C., Lindia, J.A., Cumiskey, A.M., Peterson, L.B., Mudgett, J.S., Bayne, E.K., DeMartino, J.A., MacIntyre, D.E., and Forrest, M.J. (2003). Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl. Acad. Sci. U.S.A. 100, 7947–7952.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, J.N. and Meyer, R.A. (2006). Mechanisms of neuropathic pain. Neuron 52, 77–92.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, M., Mata, M., and Fink, D.J. (2008). Continuous delta-opioid receptor activation reduces neuronal voltage-gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy. J. Neurosci. 28, 6652–6658.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A.K., D'Aquisto, F., Gentry, C., Marchand, F., McMahon, S.B., and Malcangio, M. (2006). Rapid co-release of interleukin 1beta and caspase 1 in spinal cord inflammation. J. Neurochem. 99, 868–880.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A.K., Yip, P.K., Grist, J., Gentry, C., Staniland, A.A., Marchand, F., Dehvari, M., Wotherspoon, G., Winter, J., Ullah, J., Bevan, S., and Malcangio, M. (2007). Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc. Natl. Acad. Sci. U.S.A. 104, 10655–10660.

    Article  PubMed  CAS  Google Scholar 

  • Constantin, C.E., Mair, N., Sailer, C.A., Andratsch, M., Xu, Z.Z., Blumer, M.J., Scherbakov, N., Davis, J.B., Bluethmann, H., Ji, R.R., and Kress, M. (2008). Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model. J. Neurosci. 28, 5072–5081.

    Article  PubMed  CAS  Google Scholar 

  • Costigan, M., Befort, K., Karchewski, L., Griffin, R.S., D'Urso, D., Allchorne, A., Sitarski, J., Mannion, J.W., Pratt, R.E., and Woolf, C.J. (2002). Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC. Neurosci. 3, 16.

    Article  PubMed  Google Scholar 

  • Coull, J.A., Beggs, S., Boudreau, D., Boivin, D., Tsuda, M., Inoue, K., Gravel, C., Salter, M.W., and De Koninck, Y. (2005). BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021.

    Article  PubMed  CAS  Google Scholar 

  • Coull, J.A., Boudreau, D., Bachand, K., Prescott, S.A., Nault, F., Sik, A., De Koninck, P., and De Koninck, Y. (2003). Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424, 938–942.

    Article  PubMed  CAS  Google Scholar 

  • DeLeo, J.A. and Yezierski, R.P. (2001). The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Devor, M. (1991). Neuropathic pain and injured nerve: peripheral mechanisms. Br. Med. Bull. 47, 619–630.

    Google Scholar 

  • Devor, M., Wall, P.D., and Catalan, N. (1992). Systemic lidocaine silences ectopic neuroma and DRG discharge without blocking nerve conduction. Pain 48, 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Djouhri, L., Koutsikou, S., Fang, X., McMullan, S., and Lawson, S.N. (2006). Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J. Neurosci. 26, 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka, T., Kondo, E., Dai, Y., Hashimoto, N., and Noguchi, K. (2001). Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J. Neurosci. 21, 4891–4900.

    PubMed  CAS  Google Scholar 

  • Hains, B.C. and Waxman, S.G. (2006). Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J. Neurosci. 26, 4308–4317.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Zhang, X., and Wiesenfeld-Hallin, Z. (1994). Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 17, 22–30.

    Article  PubMed  CAS  Google Scholar 

  • Hudmon, A., Choi, J.S., Tyrrell, L., Black, J.A., Rush, A.M., Waxman, S.G., and Dib-Hajj, S.D. (2008). Phosphorylation of sodium channel Na(v)1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J. Neurosci. 28, 3190–3201.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R.R., Kawasaki, Y., Zhuang, Z.Y., Wen, Y.R., and Zhang, Y.Q. (2007). Protein kinases as potential targets for the treatment of pathological pain. Handb. Exp. Pharmacol. 359–389.

    Google Scholar 

  • Ji, R.R., Samad, T.A., Jin, S.X., Schmoll, R., and Woolf, C.J. (2002). p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36, 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R.R. and Strichartz, G. (2004). Cell signaling and the genesis of neuropathic pain. Sci. STKE. 2004, reE14.

    Article  PubMed  Google Scholar 

  • Ji, R.R. and Suter, M.R. (2007). p38 MAPK, microglial signaling, and neuropathic pain. Mol. Pain 3, 33.

    Article  PubMed  Google Scholar 

  • Ji, R.R. and Woolf, C.J. (2001). Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol. Dis. 8, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R.R., Zhang, Q., Zhang, X., Piehl, F., Reilly, T., Pettersson, R.F., and Hokfelt, T. (1995). Prominent expression of bFGF in dorsal root ganglia after axotomy. Eur. J. Neurosci. 7, 2458–2468.

    Article  PubMed  CAS  Google Scholar 

  • Jin, X. and Gereau, R.W. (2006). Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J. Neurosci. 26, 246–255.

    Article  PubMed  CAS  Google Scholar 

  • Jin, S.X., Zhuang, Z.Y., Woolf, C.J., and Ji, R.R. (2003). p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 23, 4017–4022.

    PubMed  CAS  Google Scholar 

  • Kawasaki, Y., Zhang, L., Cheng, J.K., and Ji, R.R. (2008). Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28, 5189–5194.

    Article  PubMed  CAS  Google Scholar 

  • Kehlet, H., Jensen, T.S., and Woolf, C.J. (2006). Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625.

    Article  PubMed  Google Scholar 

  • Kobayashi, K., Yamanaka, H., Fukuoka, T., Dai, Y., Obata, K., and Noguchi, K. (2008). P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J. Neurosci. 28, 2892–2902.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Boehm, J., and Lee, J.C. (2003). p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Ma, C., Shu, Y., Zheng, Z., Chen, Y., Yao, H., Greenquist, K.W., White, F.A., and LaMotte, R.H. (2003). Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J. Neurophysiol. 89, 1588–1602.

    Article  PubMed  Google Scholar 

  • Ma, W., Zhang, Y., Bantel, C., and Eisenach, J.C. (2005). Medium and large injured dorsal root ganglion cells increase TRPV-1, accompanied by increased alpha2C-adrenoceptor co-expression and functional inhibition by clonidine. Pain 113, 386–394.

    Article  PubMed  CAS  Google Scholar 

  • Moore, K.A., Kohno, T., Karchewski, L.A., Scholz, J., Baba, H., and Woolf, C.J. (2002). Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731.

    PubMed  CAS  Google Scholar 

  • Obata, K., Katsura, H., Mizushima, T., Yamanaka, H., Kobayashi, K., Dai, Y., Fukuoka, T., Tokunaga, A., Tominaga, M., and Noguchi, K. (2005). TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest 115, 2393–2401.

    Article  PubMed  CAS  Google Scholar 

  • Obata, K., Yamanaka, H., Kobayashi, K., Dai, Y., Mizushima, T., Katsura, H., Fukuoka, T., Tokunaga, A., and Noguchi, K. (2004). Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J. Neurosci. 24, 10211–10222.

    Article  PubMed  CAS  Google Scholar 

  • Pabbidi, R.M., Cao, D.S., Parihar, A., Pauza, M.E., and Premkumar, L.S. (2008). Direct role of streptozotocin in inducing thermal hyperalgesia by enhanced expression of transient receptor potential vanilloid 1 in sensory neurons. Mol. Pharmacol. 73, 995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Porreca, F., Ossipov, M.H., and Gebhart, G.F. (2002). Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra, V., Tanga, F., and DeLeo, J.A. (2003). Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exp. Ther. 306, 624–630.

    Article  PubMed  CAS  Google Scholar 

  • Rush, A.M., Dib-Hajj, S.D., Liu, S., Cummins, T.R., Black, J.A., and Waxman, S.G. (2006). A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl. Acad. Sci. U.S.A. 103, 8245–8250.

    Article  PubMed  CAS  Google Scholar 

  • Schafers, M., Lee, D.H., Brors, D., Yaksh, T.L., and Sorkin, L.S. (2003a). Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J. Neurosci. 23, 3028–3038.

    PubMed  CAS  Google Scholar 

  • Schafers, M., Svensson, C.I., Sommer, C., and Sorkin, L.S. (2003b). Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J. Neurosci. 23, 2517–2521.

    PubMed  CAS  Google Scholar 

  • Sung, C.S., Wen, Z.H., Chang, W.K., Chan, K.H., Ho, S.T., Tsai, S.K., Chang, Y.C., and Wong, C.S. (2005). Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. J. Neurochem. 94, 742–752.

    Article  PubMed  CAS  Google Scholar 

  • Suter, M.R., Wen, Y.R., Decosterd, I., and Ji, R.R. (2007). Do glial cells control pain? Neuron Glia Biol. 3, 255–268.

    Article  PubMed  Google Scholar 

  • Svensson, C.I., Fitzsimmons, B., Azizi, S., Powell, H.C., Hua, X.Y., and Yaksh, T.L. (2005a). Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J. Neurochem. 92, 1508–1520.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, C.I., Schafers, M., Jones, T.L., Powell, H., and Sorkin, L.S. (2005b). Spinal blockade of TNF blocks spinal nerve ligation-induced increases in spinal P-p38. Neurosci. Lett. 379, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Sweitzer, S.M., Schubert, P., and DeLeo, J.A. (2001). Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J. Pharmacol. Exp. Ther. 297, 1210–1217.

    PubMed  CAS  Google Scholar 

  • Tang, H.B., Li, Y.S., Arihiro, K., and Nakata, Y. (2007). Activation of the neurokinin-1 receptor by substance P triggers the release of substance P from cultured adult rat dorsal root ganglion neurons. Mol. Pain 3, 42.

    Article  PubMed  Google Scholar 

  • Trang, T., Beggs, S., Wan, X. and Salter, M.W., 2009. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci. 29, 3518–3528.

    Google Scholar 

  • Tsuda, M., Inoue, K., and Salter, M.W. (2005). Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 28, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, M., Mizokoshi, A., Shigemoto-Mogami, Y., Koizumi, S., and Inoue, K. (2004). Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45, 89–95.

    Article  PubMed  Google Scholar 

  • Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S., Mizokoshi, A., Kohsaka, S., Salter, M.W., and Inoue, K. (2003). P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, L.R., Martin, D., Ulrich, P., Tracey, K.J., and Maier, S.F. (1997). Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71, 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, L.R., Milligan, E.D., and Maier, S.F. (2001). Glial activation: a driving force for pathological pain. Trends Neurosci. 24, 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Wen, Y.R., Suter, M.R., Kawasaki, Y., Huang, J., Pertin, M., Kohno, T., Berde, C.B., Decosterd, I., and Ji, R.R. (2007). Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 107, 312–321.

    Article  PubMed  Google Scholar 

  • White, F.A., Jung, H., and Miller, R.J. (2007). Chemokines and the pathophysiology of neuropathic pain. Proc. Natl. Acad. Sci. U.S.A. 104, 20151–20158.

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Gerwing, T.D., Dmyterko, M.V., Zochodne, D.W., Johnston, J.M., and Verge, V.M. (2005). Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J. Neurosci. 25, 758–767.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, C.J. and Mannion, R.J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Ringkamp, M., Hartke, T.V., Murinson, B.B., Campbell, J.N., Griffin, J.W., and Meyer, R.A. (2001). Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighboring nerve fibers. J. Neurosci. 21, RC140.

    PubMed  CAS  Google Scholar 

  • Xiao, H.S., Huang, Q.H., Zhang, F.X., Bao, L., Lu, Y.J., Guo, C., Yang, L., Huang, W.J., Fu, G., Xu, S.H., Cheng, X.P., Yan, Q., Zhu, Z.D., Zhang, X., Chen, Z., Han, Z.G., and Zhang, X. (2002). Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc. Natl. Acad. Sci. U.S.A. 99, 8360–8365.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J.T., Xin, W.J., Wei, X.H., Wu, C.Y., Ge, Y.X., Liu, Y.L., Zang, Y., Zhang, T., Li, Y.Y., and Liu, X.G. (2007). p38 activation in uninjured primary afferent neurons and in spinal microglia contributes to the development of neuropathic pain induced by selective motor fiber injury. Exp. Neurol. 204, 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka, H., Obata, K., Kobayashi, K., Dai, Y., Fukuoka, T., and Noguchi, K. (2007). Activation of fibroblast growth factor receptor by axotomy, through downstream p38 in dorsal root ganglion, contributes to neuropathic pain. Neuroscience 150, 202–211.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Shi, X.Q., Echeverry, S., Mogil, J.S., De Koninck, Y., and Rivest, S. (2007). Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 27, 12396–12406.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, Z.Y., Gerner, P., Woolf, C.J., and Ji, R.R. (2005). ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114, 149–159.

    Article  PubMed  Google Scholar 

  • Zhuang, Z.Y., Kawasaki, Y., Tan, P.H., Wen, Y.R., Huang, J., and Ji, R.R. (2007). Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun. 21, 642–651.

    Article  PubMed  CAS  Google Scholar 

  • Zhuang, Z.Y., Wen, Y.R., Zhang, D.R., Borsello, T., Bonny, C., Strichartz, G.R., Decosterd, I., and Ji, R.R. (2006). A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J. Neurosci. 26, 3551–3560.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by NIH grants NS40698, DE17794, and TW7180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Rong Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ji, RR. (2009). MAP Kinase and Cell Signaling in DRG Neurons and Spinal Microglia in Neuropathic Pain. In: Malcangio, M. (eds) Synaptic Plasticity in Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0226-9_20

Download citation

Publish with us

Policies and ethics