Skip to main content

Auditory Memories and Feedback Processing for Vocal Learning

  • Chapter
  • First Online:

Abstract

Vocal learning is an ability shared by humans and songbirds, among few others species. The processes involved in acquiring speech or song share similarities based on generating an internal representation of auditory cues. Both innate mechanisms and environmental inputs can influence song learning and speech acquisition. In songbirds a specific neural network for vocal motor control, perception and song learning has been described, which makes this system suitable for studying the formation and representations of song memories. These representations interact with auditory feedback during vocal acquisition and maintenance of adult vocalizations. This mechanism for processing auditory feedback has both online and offline components. In this chapter we attempt to provide a thematic organization identifying limitations of our knowledge and posing questions for future studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFP:

anterior forebrain pathway

BOS:

bird’s own song

CLM:

caudolateral mesopallium

CM:

caudal mesopallium

CMM:

caudomedial mesopallium

IEG:

immediate early gene

IMM:

intermediate and medial mesopallium

LMAN:

lateral magnocellular nucleus of the anterior nidopallium

MLd:

dorsal lateral nucleus of the mesencephalon

NCM:

caudomedial nidopallium

NIf:

nucleus interfacialis of the nidopallium

nXIIts:

tracheosyringeal part of the hypoglossal nucleus

Ov:

nucleus ovoidalis

PAm:

parambigualis nucleus

RA:

robust nucleus of the arcopallium

RAm:

retroambigualis nucleus

Uva:

nucleus uvaeformis

References

  • Adret P (2004) In search of the song template. Behavioral Neurobiology of Birdsong 1016:303–324.

    Google Scholar 

  • Akutagawa E and Konishi M (2010) New brain pathways found in the vocal control system of a songbird. Journal of Comparative Neurology 518:3086–3100.

    Article  PubMed  Google Scholar 

  • Amador A, Trevisan MA, and Mindlin GB (2005) Simple neural substrate predicts complex rhythmic structure in duetting birds. Physical Review E 72:031905.

    Article  CAS  Google Scholar 

  • Amin N, Grace JA, and Theunissen FE (2004) Neural response to bird’s own song and tutor song in the zebra finch field L and caudal mesopallium. Journal of Comparative Physiology A 190:469–489.

    Article  CAS  Google Scholar 

  • Andalman AS and Fee MS (2009) A basal ganglia-forebrain circuit in the songbird biases motor output to avoid vocal errors. Proceedings of the National Academy of Sciences of the United States of America 106:12518–12523.

    Article  CAS  PubMed  Google Scholar 

  • Aronov D, Andalman AS, and Fee MS (2008) A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science 320:630–634.

    Article  CAS  PubMed  Google Scholar 

  • Bailey DJ, Rosebush JC, and Wade J (2002) The hippocampus and caudomedial neostriatum show selective responsiveness to conspecific song in the female zebra finch. Journal of Neurobiology 52:43–51.

    Article  PubMed  Google Scholar 

  • Baptista LF and Petrinovich L (1984) Social interaction, sensitive phrases and the song template hypothesis in the white-crowned sparrow. Animal Behaviour 32:172–181.

    Article  Google Scholar 

  • Baptista LF and Schuchmann KL (1990) Song learning in the Anna hummingbird (Calypte-Anna). Ethology 84:15–26.

    Article  Google Scholar 

  • Bass AH, Gilland EH, and Baker R (2008) Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment. Science 321:417–421.

    Article  CAS  PubMed  Google Scholar 

  • Bauer EE, Coleman MJ, Roberts TF, Roy A, Prather JF, and Mooney R (2008) A synaptic basis for auditory-vocal integration in the songbird. Journal of Neuroscience 28:1509–1522.

    Article  CAS  PubMed  Google Scholar 

  • Beecher MD, Burt JM, O’Loghlen AL, Templeton CN, and Campbell SE (2007) Bird song learning in an eavesdropping context. Animal Behaviour 73:929–935.

    Article  Google Scholar 

  • Böhner J (1990) Early Acquisition of song in the zebra finch, Taeniopygia-guttata. Animal Behaviour 39:369–374.

    Article  Google Scholar 

  • Bolhuis JJ, Hetebrij E, Den Boer-Visser AM, De Groot JH, and Zijlstra GGO (2001) Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. European Journal of Neuroscience 13:2165–2170.

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis JJ, Zijlstra GGO, den Boer-Visser AM, and Van der Zee EA (2000) Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the United States of America 97:2282–2285.

    Article  CAS  PubMed  Google Scholar 

  • Boughman JW (1998) Vocal learning by greater spear-nosed bats. Proceedings of the Royal Society of London Series B-Biological Sciences 265:227–233.

    Article  CAS  Google Scholar 

  • Borden GJ (1979) An interpretation of research of feedback interruption in speech. Brain and Language 7:307–319.

    Article  CAS  PubMed  Google Scholar 

  • Braaten RF and Reynolds K (1999) Auditory preference for conspecific song in isolation-reared zebra finches. Animal Behaviour 58:105–111.

    Article  PubMed  Google Scholar 

  • Brainard MS and Doupe AJ (2000a) Auditory feedback in learning and maintenance of vocal behaviour. Nature Reviews Neuroscience 1:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Brainard MS and Doupe AJ (2000b) Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404:762–766.

    Article  CAS  PubMed  Google Scholar 

  • Brawn TP, Nusbaum HC, and Margoliash D (2010) Sleep-dependent consolidation of auditory discrimination learning in adult starlings. Journal of Neuroscience 30:609–613.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA (1991) Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science 251:303–305.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz EA, Arnold AP, and Levin RN (1985) Neural correlates of female song in tropical duetting birds. Brain Research 343:104–112.

    Article  CAS  PubMed  Google Scholar 

  • Chew SJ, Mello C, Nottebohm F, Jarvis E, and Vicario DS (1995) Decrements in auditory responses to a repeated conspecific song are long-lasting and require 2 periods of protein-synthesis in the songbird forebrain. Proceedings of the National Academy of Sciences of the United States of America 92:3406–3410.

    Article  CAS  PubMed  Google Scholar 

  • Chew SJ, Vicario DS, and Nottebohm F (1996) A large-capacity memory system that recognizes the calls and songs of individual birds. Proceedings of the National Academy of Sciences of the United States of America 93:1950–1955.

    Article  CAS  PubMed  Google Scholar 

  • Clayton NS (1988) Song discrimination-learning in zebra finches. Animal Behaviour 36:1016–1024.

    Article  Google Scholar 

  • Coleman MJ and Mooney R (2004) Synaptic transformations underlying highly selective auditory representations of learned birdsong. Journal of Neuroscience 24:7251–7265.

    Article  CAS  PubMed  Google Scholar 

  • Coleman MJ, Roy A, Wild JM, and Mooney R (2007) Thalamic gating of auditory responses in telencephalic song control nuclei. Journal of Neuroscience 27:10024–10036.

    Article  CAS  PubMed  Google Scholar 

  • Corballis MC (2002) From Hand to Mouth: The Origins of Language. Princeton University Press, Princeton.

    Google Scholar 

  • Crapse TB and Sommer MA (2008) Corollary discharge across the animal kingdom. Nature Reviews Neuroscience 9:587–600.

    Article  CAS  PubMed  Google Scholar 

  • Dave AS and Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290:812–816.

    Article  CAS  PubMed  Google Scholar 

  • Del Negro C, Kreutzer M, and Gahr M (2000) Sexually stimulating signals of canary (Serinus canaria) songs: evidence for a female-specific auditory representation in the HVc nucleus during the breeding season. Behavioral Neuroscience 114:526–542.

    Article  CAS  PubMed  Google Scholar 

  • Deregnaucourt S, Mitra PP, Feher O, Pytte C, and Tchernichovski O (2005) How sleep affects the developmental learning of bird song. Nature 433:710–716.

    Article  CAS  PubMed  Google Scholar 

  • Dooling R and Searcy M (1980) Early perceptual selectivity in the swamp sparrow. Developmental Psychobiology 13:499–506.

    Article  CAS  PubMed  Google Scholar 

  • Doupe AJ (1997) Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. Journal of Neuroscience 17:1147–1167.

    CAS  PubMed  Google Scholar 

  • Doupe AJ and Konishi M (1991) Song-selective auditory circuits in the vocal control system of the zebra finch. Proceedings of the National Academy of Sciences of the United States of America 88:11339–11343.

    Article  CAS  PubMed  Google Scholar 

  • Doupe AJ and Solis MM (1997) Song- and order-selective neurons develop in the songbird anterior forebrain during vocal learning. Journal of Neurobiology 33:694–709.

    Article  CAS  PubMed  Google Scholar 

  • Falls JB (1982) Individual recognition by sound in birds. In: Kroodsma DE and Miller EH (eds). Acoustic Communication in Birds, volume 2, Song Learning and Its Consequences. Academic Press, New York, pp. 237–278.

    Google Scholar 

  • Fenn KM, Nusbaum HC, and Margoliash D (2003) Consolidation during sleep of perceptual learning of spoken language. Nature 425:614–616.

    Article  CAS  PubMed  Google Scholar 

  • Fortune ES and Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the Field L complex in male zebra finches (Taenopygia guttata). Journal of Comparative Neurology 325:388–404.

    Article  CAS  PubMed  Google Scholar 

  • Fortune ES and Margoliash D (1995) Parallel pathways and convergence onto HVC and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). Journal of Comparative Neurology 360:413–441.

    Article  CAS  PubMed  Google Scholar 

  • Foster DJ and Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–683.

    Article  CAS  PubMed  Google Scholar 

  • Fromkin V, Krashen S, Curtiss S, Rigler D, and Rigler M (1974) The development of language in Genie: a case of language acquisition beyond the “critical period”. Brain and Language 1:81–107.

    Article  Google Scholar 

  • Gentner TQ, Hulse SH, Duffy D, and Ball GF (2001) Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. Journal of Neurobiology 46:48–58.

    Article  CAS  PubMed  Google Scholar 

  • Gentner TQ and Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424:669–674.

    Article  CAS  PubMed  Google Scholar 

  • Hahnloser RHR, Kozhevnikov AA, and Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70.

    Article  CAS  PubMed  Google Scholar 

  • Hessler NA and Doupe AJ (1999) Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. Journal of Neuroscience 19:10461–10481.

    CAS  PubMed  Google Scholar 

  • Hoffman KL and McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297:2070–2073.

    Article  CAS  PubMed  Google Scholar 

  • Horita H, Wada K, and Jarvis ED (2008) Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathway. European Journal of Neuroscience 28:2519–2532.

    Article  PubMed  Google Scholar 

  • Horn G (1985) Memory, Imprinting, and the Brain: An Inquiry Into Mechanisms. Oxford University Press, New York.

    Book  Google Scholar 

  • Houde JF and Jordan MI (1998) Sensorimotor adaptation in speech production. Science 279:1213–1216.

    Article  CAS  PubMed  Google Scholar 

  • Hultsch H and Todt D (2004) Learning to sing. In: Marler P and Slabbekoorn H (eds). Nature’s Music: The Science of Birdsong. Elsevier Academic Press, San Diego, pp. 80–107.

    Chapter  Google Scholar 

  • Janata P and Margoliash D (1999) Gradual emergence of song selectivity in sensorimotor structures of the male zebra finch song system. Journal of Neuroscience 19:5108–5118.

    CAS  PubMed  Google Scholar 

  • Janik VM and Slater PJB (2000) The different roles of social learning in vocal communication. Animal Behaviour 60:1–11.

    Article  PubMed  Google Scholar 

  • Jarvis ED, et al. (2005) Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience 6:151–159.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Ribeiro S, da Silva ML, Ventrua D, Vielliard J, and Mello CV (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406:628–632.

    Article  CAS  PubMed  Google Scholar 

  • Jin H and Clayton DF (1997) Localized changes in immediate-early gene regulation during sensory and motor learning in zebra finches. Neuron 19:1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens U (2002) Neural pathways underlying vocal control. Neuroscience and Biobehavioral Review 26: 235–258.

    Article  Google Scholar 

  • Karlsson MP and Frank LM (2009) Awake replay of remote experiences in the hippocampus. Nature Neuroscience 12:913–918.

    Article  CAS  PubMed  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito, Jezzard P, Adams MM, Turner R, and Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America 95:861–868.

    Article  CAS  PubMed  Google Scholar 

  • Karten H (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Research 6:409–427.

    Article  CAS  PubMed  Google Scholar 

  • Karten H (1968) The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Research 11:134–153.

    Article  CAS  PubMed  Google Scholar 

  • Karten HJ (1997) Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proceedings of the National Academy of Sciences of the United States of America 94:2800–2804.

    Article  CAS  PubMed  Google Scholar 

  • Kelley DB and Nottebohm F (1979) Projections of a telencephalic auditory nucleus -Field L-in the canary. Journal of Comparative Neurology 183:455–469.

    Article  CAS  PubMed  Google Scholar 

  • Keller GB and Hahnloser RHR (2009) Neural processing of auditory feedback during vocal practice in a songbird. Nature 457:187–190.

    Article  CAS  PubMed  Google Scholar 

  • King AP, West MJ, and Goldstein MH (2005) Nonvocal shaping of avian song development: parallels to human speech development. Ethology 111:101–117.

    Article  Google Scholar 

  • Konishi M (1965) The role of auditory feedback in the control of vocalization in the white-crowned sparrow. Zeitschrift für Tierpsychologie 22:770–783.

    CAS  PubMed  Google Scholar 

  • Konishi M (1978) Auditory environment and vocal development in birds. In: Walk RD and Pick HLJ (eds). Perception and Experience. Plenum, New York, pp. 105–118.

    Google Scholar 

  • Konishi M (2004) The role of auditory feedback in birdsong. Behavioral Neurobiology of Birdsong 1016:463–475.

    Google Scholar 

  • Kroodsma DE (2005) The Singing Life of Birds: The Art and Science of Listening to Birdsong. Houghton Mifflin Publishers, New York.

    Google Scholar 

  • Kroodsma DE and Miller EH (1996) Ecology and Evolution of Acoustic Communication in Birds. Cornell University Press, Ithaca.

    Google Scholar 

  • Lane H, Webster JW (1991) Speech deterioration in postlingually deafened adults. Journal of the Acoustical Society of America 89:859–866.

    Article  CAS  PubMed  Google Scholar 

  • Lee AK and Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194.

    Article  CAS  PubMed  Google Scholar 

  • Leonardo A (2004) Experimental test of the birdsong error-correction model. Proceedings of the National Academy of Sciences of the United States of America 101:16935–16940.

    Article  CAS  PubMed  Google Scholar 

  • Leonardo A and Fee MS (2005) Ensemble coding of vocal control in birdsong. Journal of Neuroscience 25:652–661.

    Article  CAS  PubMed  Google Scholar 

  • Leonardo A and Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399:466–470.

    Article  CAS  PubMed  Google Scholar 

  • Leppelsack H-J (1983) Analysis of song in the auditory pathway of song birds. In: Ewert JP, Capranica RR, and Ingle DJ (eds). Advances in Vertebrate Neuroethology. Plenum, New York, pp. 783–799.

    Google Scholar 

  • Leppelsack HJ and Vogt M (1976) Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. Journal of Comparative Physiology A 107:263–274.

    Article  Google Scholar 

  • Liu W-C, Wada K, and Nottebohm F (2009) Variable food begging calls are harbingers of vocal learning. Public Library of Science One 4:e5929.

    PubMed  Google Scholar 

  • Lombardino AJ and Nottebohm F (2000) Age at deafening affects the stability of learned song in adult male zebra finches. Journal of Neuroscience 20:5054–5064.

    CAS  PubMed  Google Scholar 

  • MacDougall-Shackleton SA, Hulse SH, and Ball GF (1998) Neural bases of song preferences in female zebra finches (Taeniopygia guttata). Neuroreport 9:3047–3052.

    Article  CAS  PubMed  Google Scholar 

  • Maquet P, et al. (2000) Experience-dependent changes in cerebral activation during human REM sleep. Nature Neuroscience 3:831–836.

    Article  CAS  PubMed  Google Scholar 

  • Margoliash D (1983) Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow. Journal of Neuroscience 3:1039–1057.

    CAS  PubMed  Google Scholar 

  • Margoliash D (1986) Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow. Journal of Neuroscience 6:1643–1661.

    CAS  PubMed  Google Scholar 

  • Margoliash D (2002) Evaluating theories of bird song learning: implications for future directions. Journal of Comparative Physiology A 188:851–866.

    Article  CAS  Google Scholar 

  • Margoliash D and Fenn KM (2009) Sleep and memory consolidation in audition. In: Dallos P and Oertel D (eds). The Senses: A Comprehensive Reference, volume 3, Audition. Elsevier, Amsterdam, pp. 895–911.

    Google Scholar 

  • Margoliash D and Konishi M (1985) Auditory representation of autogenous song in the song system of white-crowned sparrows. Proceedings of the National Academy of Sciences of the United States of America 82:5997–6000.

    Article  CAS  PubMed  Google Scholar 

  • Marler P (1970) A comparative approach to vocal learning: song development in white-crowned sparrows. Journal of Comparative and Physiological Psychology 71:1–25.

    Article  Google Scholar 

  • Marler P (1997) Three models of song learning: evidence from behavior. Journal of Neurobiology 33:501–516.

    Article  CAS  PubMed  Google Scholar 

  • Mello CV and Jarvis ED (2008) Behavior-dependent expression of inducible genes in vocal learning birds. In: Zeigler HP and Marler P (eds). Neuroscience of Birdsong. Cambridge University Press, Cambridge, pp. 381–397.

    Google Scholar 

  • Mello CV, Velho TAF, and Pinaud R (2004) Song-induced gene expression. A window on song auditory processing and perception. Annals of the New York Academy of Sciences 1016:263–281.

    Article  CAS  PubMed  Google Scholar 

  • Mello CV, Vicario DS, and Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proceedings of the National Academy of Sciences of the United States of America 89:6818–6822.

    Article  CAS  PubMed  Google Scholar 

  • Miller DB (1979) Long-term recognition of fathers song by female zebra finches. Nature 280:389–391.

    Article  Google Scholar 

  • Mindlin GB and Laje R (2005) The Physics of Birdsong. Springer, Berlin.

    Google Scholar 

  • Müller CM and Leppelsack HJ (1985) Feature-extraction and tonotopic organization in the avian auditory forebrain. Experimental Brain Research 59:587–599.

    Article  Google Scholar 

  • Mundinger PC (1979) Call learning in the Carduelinae: ethological and systematic considerations. Systematic Zoology 28:270–283.

    Article  Google Scholar 

  • Nagel KL and Doupe AJ (2008) Organizing principles of spectro-temporal encoding in the avian primary auditory area Field L. Neuron 58:938–955.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA and Marler P (1993) Innate recognition of song in white-crowned sparrows – a role in selective vocal learning. Animal Behaviour 46:806–808.

    Article  Google Scholar 

  • Newell KM (1991) Motor skill acquisition. Annual Review of Psychology 42:213–237.

    Article  CAS  PubMed  Google Scholar 

  • Nick TA and Konishi M (2005a) Neural auditory selectivity develops in parallel with song. Journal of Neurobiology 62:469–481.

    Article  PubMed  Google Scholar 

  • Nick TA and Konishi M (2005b) Neural song preference during vocal learning in the zebra finch depends on age and state. Journal of Neurobiology 62:231–242.

    Article  PubMed  Google Scholar 

  • Noad MJ, Cato DH, Bryden MM, Jenner MN, and Jenner KCS (2000) Cultural revolution in whale songs. Nature 408:537.

    Article  CAS  PubMed  Google Scholar 

  • Nordeen KW and Nordeen EJ (1992) Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behavioral and Neural Biology 57:58–66.

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F (1972) Origins of vocal learning. American Naturalist 106:116–140.

    Article  Google Scholar 

  • Nottebohm F, Stokes TM, and Leonard CM (1976) Central control of song in the canary, Serinus canarius. Journal of Comparative Neurology 165:457–486.

    Article  CAS  PubMed  Google Scholar 

  • Okanoya K and Yamaguchi A (1997) Adult Bengalese finches (Lonchura striata var. domestica) require real-time auditory feedback to produce normal song syntax. Journal of Neurobiology 33:343–356.

    Article  CAS  PubMed  Google Scholar 

  • Payne RB (1981) Song learning and social interaction in indigo buntings. Animal Behaviour 29:688–697.

    Article  Google Scholar 

  • Pavlides C and Winson J (1989) Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. Journal of Neuroscience 9:2907–2918.

    CAS  PubMed  Google Scholar 

  • Peigneux P, et al. (2003) Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage 20:125–134.

    Article  PubMed  Google Scholar 

  • Phan ML, Pytte CL, and Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences of the United States of America 103:1088–1093.

    Article  CAS  PubMed  Google Scholar 

  • Pinker S and Bloom P (1990) Natural language and natural selection. Behavioral and Brain Sciences 13:707–784.

    Google Scholar 

  • Poole JH, Tyack PL, Stoeger-Horwath AS, and Watwood S (2005) Elephants are capable of vocal learning. Nature 434:455–456.

    Article  CAS  PubMed  Google Scholar 

  • Prather JF, Peters S, Nowicki S and Mooney R (2008) Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451:305–310.

    Article  CAS  PubMed  Google Scholar 

  • Prather JF, Nowicki S, Anderson RC, Peters S, and Mooney R (2009) Neural correlates of categorical perception in learned vocal communication. Nature Neuroscience 12:221–228.

    Article  CAS  PubMed  Google Scholar 

  • Price PH (1979) Developmental determinants of structure in zebra finch song. Journal of Comparative and Physiological Psychology 93:260–277.

    Article  Google Scholar 

  • Pytte CL, Gerson M, Miller J, and Kirn JR (2007) Increasing stereotypy in adult zebra finch song correlates with a declining rate of adult neurogenesis. Developmental Neurobiology 67:1699–1720.

    Article  PubMed  Google Scholar 

  • Reiner A, et al. (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology 473:377–414.

    Article  PubMed  Google Scholar 

  • Ribeiro S, Cecchi GA, Magnasco MO, and Mello CV (1998) Toward a song code: evidence for a syllabic representation in the canary brain. Neuron 21:359–371.

    Article  CAS  PubMed  Google Scholar 

  • Riebel K, Smallegange IM, Terpstra NJ, and Bolhuis JJ (2002) Sexual equality in zebra finch song preference: evidence for a dissociation between song recognition and production learning. Proceedings of the Royal Society of London Series B, Biological Sciences 269:729–733.

    Article  Google Scholar 

  • Rizzolatti G and Arbib MA (1998) Language within our grasp. Trends in Neurosciences 21:188–94.

    Article  CAS  PubMed  Google Scholar 

  • Rose GJ, Goller F, Gritton HJ, Plamondon SL, Baugh AT, and Cooper BG (2004) Species-typical songs in white-crowned sparrows tutored with only phrase pairs. Nature 432:753–758.

    Article  CAS  PubMed  Google Scholar 

  • Roy A and Mooney R (2007) Auditory plasticity in a basal ganglia-forebrain pathway during decrystallization of adult birdsong. Journal of Neuroscience 27:6374–6387.

    Article  CAS  PubMed  Google Scholar 

  • Roy A and Mooney R (2009) Song decrystallization in adult zebra finches does not require the song nucleus NIf. Journal of Neurophysiology 102:979–991.

    Article  PubMed  Google Scholar 

  • Sakata JT and Brainard MS (2006) Real-time contributions of auditory feedback to avian vocal motor control. Journal of Neuroscience 26:9619–9628.

    Article  CAS  PubMed  Google Scholar 

  • Sakata JT and Brainard MS (2008) Online contributions of auditory feedback to neural activity in avian song control circuitry. Journal of Neuroscience 28:11378–11390.

    Article  CAS  PubMed  Google Scholar 

  • Saranathan V, Hamilton D, Powell GVN, Kroodsma DE, and Prum RO (2007) Genetic evidence supports song learning in the three-wattled bellbird Procnias tricarunculata (Cotingidae). Molecular Ecology 16:3689–3702.

    Article  CAS  PubMed  Google Scholar 

  • Scheich H, Bonke BA, Bonke D, and Langner G (1979a) Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique. Cell and Tissue Research 204:17–27.

    Article  CAS  PubMed  Google Scholar 

  • Scheich H, Langner G, and Bonke D (1979b) Responsiveness of units in the auditory neostriatum of the Guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. II. Discrimination of iambus-like calls. Journal of Comparative Physiology A 132:257–276.

    Article  Google Scholar 

  • Schmidt MF, Ashmore RC, and Vu ET (2004) Bilateral control and interhemispheric coordination in the avian song motor system. Behavioral Neurobiology of Birdsong 1016:171–186.

    Google Scholar 

  • Seller TJ (1981) Midbrain vocalization centres in birds. Trends in Neurosciences 4:301–303.

    Article  Google Scholar 

  • Shank SS and Margoliash D (2009) Sleep and sensorimotor integration during early vocal learning in a songbird. Nature 458:73–74.

    Article  CAS  PubMed  Google Scholar 

  • Sober SJ and Brainard MS (2009) Adult birdsong is actively maintained by error correction. Nature Neuroscience 12:927–931.

    Article  CAS  PubMed  Google Scholar 

  • Sober SJ, Wohlgemuth MJ, and Brainard MS (2008) Central contributions to acoustic variation in birdsong. Journal of Neuroscience 28:10370–10379.

    Article  CAS  PubMed  Google Scholar 

  • Soha JA and Marler P (2000) A species-specific acoustic cue for selective song learning in the white-crowned sparrow. Animal Behaviour 60:297–306.

    Article  PubMed  Google Scholar 

  • Solis MM and Doupe AJ (1997) Anterior forebrain neurons develop selectivity by an intermediate stage of birdsong learning. Journal of Neuroscience 17:6447–6462.

    CAS  PubMed  Google Scholar 

  • Solis MM and Doupe AJ (1999) Contributions of tutor and bird's own song experience to neural selectivity in the songbird anterior forebrain. Journal of Neuroscience 19:4559–4584.

    CAS  PubMed  Google Scholar 

  • Solis MM and Doupe AJ (2000) Compromised neural selectivity for song in birds with impaired sensorimotor learning. Neuron 25:109–121.

    Article  CAS  PubMed  Google Scholar 

  • Stripling R, Kruse AA, and Clayton DF (2001) Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities. Journal of Neurobiology 48:163–180.

    Article  CAS  PubMed  Google Scholar 

  • Tchernichovski O and Mitra PP (2002) Towards quantification of vocal imitation in the zebra finch. Journal of Comparative Physiology A 188:867–878.

    Article  CAS  Google Scholar 

  • Terpstra NJ, Bolhuis JJ, Riebel K, van der Burg JMM, and den Boer-Visser AM (2006) Localized brain activation specific to auditory memory in a female songbird. Journal of Comparative Neurology 494:784–791.

    Article  PubMed  Google Scholar 

  • Theunissen FE, Amin N, Shaevitz SS, Woolley SM, Fremouw T, and Hauber ME (2004) Song selectivity in the song system and in the auditory forebrain. Annals of the New York Academy of Sciences 1016:222–245.

    Article  PubMed  Google Scholar 

  • Troyer TW and Doupe AJ (2000a) An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables. Journal of Neurophysiology 84:1204–1223.

    CAS  PubMed  Google Scholar 

  • Troyer TW and Doupe AJ (2000b) An associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence. Journal of Neurophysiology 84:1224–1239.

    CAS  PubMed  Google Scholar 

  • Vates GE, Broome BM, Mello CV, and Nottebohm F (1996) Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches. Journal of Comparative Neurology 366:613–642.

    Article  CAS  PubMed  Google Scholar 

  • Vignal C, Andru J, and Mathevon N (2005) Social context modulates behavioural and brain immediate early gene responses to sound in male songbird. European Journal of Neuroscience 22:949–955.

    Article  PubMed  Google Scholar 

  • Waldstein RS (1990) Effects of postlingual deafness on speech production: implications for the role of auditory feedback. Journal of the Acoustical Society of America 88:2099–2114.

    Article  CAS  PubMed  Google Scholar 

  • Walker MP (2005) A refined model of sleep and the time course of memory formation. Behavioral and Brain Sciences 28:51–64.

    PubMed  Google Scholar 

  • West MJ and King AP (1988) Female visual displays affect the development of male song in the cowbird. Nature 334:244–246.

    Article  CAS  PubMed  Google Scholar 

  • Wilbrecht L and Nottebohm F (2003) Vocal learning in birds and humans. Mental Retardation and Developmental Disabilities Research Reviews 9:135–148.

    Article  PubMed  Google Scholar 

  • Wild JM (2004) Functional neuroanatomy of the sensorimotor control of singing. Behavioral Neurobiology of Birdsong 1016:438–462.

    Google Scholar 

  • Wild JM, Karten HJ, and Frost BJ (1993) Connections of the auditory forebrain in the pigeon (Columba livia). Journal of Comparative Neurology 337:32–62.

    Article  CAS  PubMed  Google Scholar 

  • Williams H and Mehta N (1999) Changes in adult zebra finch song require a forebrain nucleus that is not necessary for song production. Journal of Neurobiology 39:14–28.

    Article  CAS  PubMed  Google Scholar 

  • Williams H and Vicario DS (1993) Temporal patterning of song production: participation of nucleus uvaeformis of the thalamus. Journal of Neurobiology 24:903–912.

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA and McNaughton BL (1994) Reactivation of hippocampal ensamble memories during sleep. Science 265:676–679.

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Handley P, Ploog D, and Schott D (1974) Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behavior 47:230–239.

    Article  Google Scholar 

  • Woolley SMN and Rubel EW (2002) Vocal memory and learning in adult Bengalese Finches with regenerated hair cells. Journal of Neuroscience 22:7774–7787.

    CAS  PubMed  Google Scholar 

  • Yu AC and Margoliash D (1996) Temporal hierarchical control of singing in birds. Science 273:1871–1875.

    Article  CAS  PubMed  Google Scholar 

  • Zysman D, Mendez JM, Pando B, Aliaga J, Goller F, and Mindlin GB (2005) Synthesizing bird song. Physical Review E 72:051926.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants MH59831 and DC007206 to DM and Human Frontiers Science Program fellowship LT000735 to AA. We are grateful for comments on the manuscript provided by Patrice Adret and Morgan Wirthlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Margoliash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Amador, A., Margoliash, D. (2011). Auditory Memories and Feedback Processing for Vocal Learning. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_26

Download citation

Publish with us

Policies and ethics