Skip to main content

Thermodynamically-Consistent Multiscale Constitutive Modeling of Glassy Polymer Materials

  • Conference paper
IUTAM Symposium on Modelling Nanomaterials and Nanosystems

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 13))

Abstract

The multiscale modeling of polymer-based materials has many challenges that not yet been fully addressed in the literature. These challenges are summarized and discussed. A particular challenge is the modeling of the large distribution of mi-crostates that exist in many bulk engineering polymer materials. A multiscale modeling approach is proposed to predict the bulk Young's modulus of polymers using a series of molecular models of individual polymer microstates and a statistics-based micromechanical modeling method. The method is applied to polyimide and polycarbonate material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Odegard GM, Frankland SJV, Gates TS (2005) Effect of Nanotube Functionalization on the Elastic Properties of Polyethylene Nanotube Composites. AIAA Journal 43:1828–1835.

    Article  CAS  Google Scholar 

  2. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-Continuum Modeling of Nano-Structured Materials. Composites Science and Technology 62:1869–1880.

    Article  CAS  Google Scholar 

  3. Odegard GM, Gates TS, Wise KE, Park C, Siochi E (2003) Constitutive Modeling of Nano-tube-Reinforced Polymer Composites. Composites Science and Technology 63:1671–1687.

    Article  CAS  Google Scholar 

  4. Odegard GM, Pipes RB, Hubert P (2004) Comparison of Two Models of SWCN Polymer Composites. Composites Science and Technology 64:1011–1020.

    Article  CAS  Google Scholar 

  5. Valavala PK, Clancy TC, Odegard GM, Gates TS (2007) Nonlinear Multiscale Modeling of Polymer Materials. International Journal of Solids and Structures 44:1161–1179.

    Article  MATH  CAS  Google Scholar 

  6. Anand L, Su C (2005) A Theory for Amorphous Viscoplastic Materials Undergoing Finite Deformations, with Application to Metallic Glasses. Journal of the Mechanics and Physics of Solids 53:1362–1396.

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  7. Cho J, Sun CT (2007) A Molecular Dynamics Simulation Study of Inclusion Size Effect on Polymeric Nanocomposites. Computational Materials Science 41:54–62.

    Article  Google Scholar 

  8. Theodorou DN, Suter UW (1986) Atomistic Modeling of Mechanical Properties of Polymeric Glasses. Macromolecules 19:139–154.

    Article  CAS  Google Scholar 

  9. Meyers MT, Rickman JM, Delph TJ (2005) The Calculation of Elastic Constants from Displacement Fluctuations. Journal of Applied Physics 98:1–3.

    Article  CAS  Google Scholar 

  10. Miranda CR, Tretiakov KV, Scandolo S (2006) A Computational Study of Elastic Properties of Disordered Systems with Voids. Journal of Non-Crystalline Solids 352:4283–4286.

    Article  ADS  CAS  Google Scholar 

  11. Parrinello M, Rahman A (1982) Strain Fluctuations and Elastic Constants. Journal of Chemical Physics 76:2662–2666.

    Article  ADS  CAS  Google Scholar 

  12. Ray JR, Rahman A (1984) Statistical Ensembles and Molecular Dynamics Studies of Anisotropic Solids. Journal of Chemical Physics 80:4423–4428.

    Article  ADS  CAS  Google Scholar 

  13. Van Workum K, de Pablo JJ (2003) Computer Simulation of the Mechanical Properties of Amorphous Polymer Nanostructures. Nano Letters 3:1405–1410.

    Article  CAS  Google Scholar 

  14. Yoshimoto K, Papakonstantopoulos GJ, Lutsko JF, De Pablo JJ (2005) Statistical Calculation of Elastic Moduli for Atomistic Models. Physical Review B71:1–6.

    Article  CAS  Google Scholar 

  15. Zhou Z (2001) Fluctuations and Thermodynamics Properties of the Constant Shear Strain Ensemble. Journal of Chemical Physics 114:8769–8774.

    Article  ADS  CAS  Google Scholar 

  16. Aleman C, Munoz-Guerra S (1996) On the Mechanical Properties of Poly(ethylene tereph-thalate). Force-Field Parametrization and Conformational Analysis for the Prediction of the Crystal Moduli. Journal of Polymer Science Part B: Polymer Physics 34:963–973.

    Article  CAS  Google Scholar 

  17. Fan CF, Cagin T, Chen ZM, Smith KA (1994) Molecular Modeling of Polycarbonate. 1. Force Field, Static Structure, and Mechanical Properties. Macromolecules 27:2383–2391.

    Article  CAS  Google Scholar 

  18. Fan CF, Hsu SL (1992) Application of the Molecular Simulation Technique to Characterize the Structure and Properties of an Aromatic Polysulfone System. 2. Mechanical and Thermal Properties. Macromolecules 25:266–270.

    Article  CAS  Google Scholar 

  19. Hutnik M, Argon AS, Suter UW (1993) Simulation of Elastic and Plastic Response in the Glassy Polycarbonate of 4,4'-Isopropylidenediphenol. Macromolecules 26:1097–1108.

    Article  CAS  Google Scholar 

  20. Jang SS, Jo WH (1999) Analysis of the Mechanical Behavior of Amorphous Atactic Poly(oxypropylene) by Atomistic Modeling. Macromolecular Theory and Simulations 8:1– 9.

    Article  CAS  Google Scholar 

  21. Jang SS, Jo WH (1999) Analysis of the Mechanical Behavior of Poly(trimethylene tereph-thalate) in an Amorphous State under Uniaxial Extension-Compression Condition through Atomistic Modeling. Journal of Chemical Physics 110:7524–7532.

    Article  ADS  CAS  Google Scholar 

  22. Kang JW, Choi K, Jo WH, Hsu SL (1998) Structure-Property Relationships of Polyimides: A Molecular Simulation Approach. Polymer 39:7079–7078.

    Article  CAS  Google Scholar 

  23. Odegard GM, Clancy TC, Gates TS (2005) Modeling the Mechanical Properties of Nanopar-ticle/Polymer Composites. Polymer 46:553–562.

    Article  CAS  Google Scholar 

  24. Papakonstantopoulos GJ, Doxastakis M, Nealey PF, Barrat JL, De Pablo JJ (2007) Calculation of Local Mechanical Properties of Filled Polymers. Physical Review E75:1–13.

    Article  CAS  Google Scholar 

  25. Raaska T, Niemela S, Sundholm F (1994) Atom-Based Modeling of Elastic Constants in Amorphous Polystyrene. Macromolecules 27:5751–5757.

    Article  CAS  Google Scholar 

  26. Wang Y, Sun C, Sun X, Hinkley J, Odegard GM, Gates TS (2003) 2-D Nano-Scale Finite Element Analysis of a Polymer Field. Composites Science and Technology 63:1581–1590.

    Article  CAS  Google Scholar 

  27. Wang Y, Zhang C, Zhou E, Sun C, Hinkley J, Gates TS, Su J (2006) Atomistic Finite Elements Applicable to Solid Polymers. Computational Materials Science 36:292–302.

    Article  CAS  Google Scholar 

  28. Wu C, Xu W (2006) Atomistic Molecular Modelling of Crosslinked Epoxy Resin. Polymer 47:6004–6009.

    Article  CAS  MathSciNet  Google Scholar 

  29. Yang JS, Jo WH (2001) Analysis of the Elastic Deformation of Semicrystalline Poly(trimethylene terephthalate) by the Atomistic-Continuum Model. Journal of Chemical Physics 114:8159–8164.

    Article  ADS  CAS  Google Scholar 

  30. Brown D, Mele P, Marceau S, Alberola ND (2003) A Molecular Dynamics Study of a Model Nanoparticle Embedded in a Polymer Matrix. Macromolecules 36:1395–1406.

    Article  CAS  Google Scholar 

  31. Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces. Journal of Physical Chemistry B106:3046–3048.

    Article  CAS  Google Scholar 

  32. Griebel M, Hamaekers J (2004) Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites. Computer Methods in Applied Mechanics and Engineering 193:1773–1788.

    Article  MATH  MathSciNet  Google Scholar 

  33. Qi D, Hinkley J, He G (2005) Molecular Dynamics Simulation of Thermal and Mechanical Properties of Polyimide-Carbon Nanotube Composites. Modeling and Simulation in Materials Science and Engineering 13:493–507.

    Article  ADS  CAS  Google Scholar 

  34. Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale Mi-cromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle. Polymer 45:487–506.

    Article  CAS  Google Scholar 

  35. Liu WK, Karpov EG, Park HS (2006) Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. John Wiley & Sons, Ltd., Hoboken, NJ.

    Book  Google Scholar 

  36. Zhou M (2003) A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence. Proceedings of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences 459:2347–2392.

    Article  MATH  ADS  CAS  Google Scholar 

  37. Capaldi FM, Boyce MC, Rutledge GC (2004) Molecular Response of a Glassy Polymer to Active Deformation. Polymer 45:1391–1399.

    Article  CAS  Google Scholar 

  38. Laot CM, Marand E, Schmittmann B, Zia RKP (2003) Effects of Cooling Rate and Physical Aging on the Gas Transport Properties in Polycarbonate. Macromolecules 36:8673–8684.

    Article  CAS  Google Scholar 

  39. Lyulin AV, Michels MAJ (2002) Molecular Dynamics Simulation of Bulk Atactic Polystyrene in the Vicinity of T-g. Macromolecules 35:1463–1472.

    Article  CAS  Google Scholar 

  40. Stachurski ZH (2003) Strength and Deformation of Rigid Polymers: Structure and Topology in Amorphous Polymers. Polymer 44:6059–6066.

    Article  CAS  Google Scholar 

  41. Cohen MH, Turnbull D (1970) On the Free-volume Model of Liquid-Glass Transition. Journal of Chemical Physics 52:3038.

    Article  ADS  CAS  Google Scholar 

  42. Dlubek G, Pointeck J, Shaikh MQ, Hassan EM, Krause-Rehberg R (2007) Free Volume of an Oligomeric Epoxy Resin and Its Relation to Structural Relaxation: Evidence from Positron Life-time and Pressure-volume-temperature Experiments. Physical Review E 75.

    Google Scholar 

  43. Hinkley JA, Eftekhari A, Crook RA, Jensen BJ, Singh JJ (1992) Free-Volume in Glassy Poly(arylene ether ketone)s. Journal of Polymer Science Part B: Polymer Physics 30:1195– 1198.

    Article  CAS  Google Scholar 

  44. Roe RJ, Curro JJ (1983) Small-Angle X-Ray-Scattering Study of Density Fluctuation in Polystyrene Annealed below the Glass-Transition Temperature. Macromolecules 16:428–434.

    Article  CAS  Google Scholar 

  45. Roe RJ, Rigby D (1990) Free-Volume Distribution and Local Chain Motion in Polymer Liquid and Glass Studied by MD-Simulation. Abstracts of Papers of the American Chemical Society 199:361-POLY.

    Google Scholar 

  46. Rutledge GC, Suter UW (1991) Calculation of Mechanical-Properties of Poly(P-phenylene terephthalamide) by Atomistic Modeling. Polymer 32:2179–2189.

    Article  CAS  Google Scholar 

  47. Wilks BR, Chung WJ, Ludovice PJ, Rezac ME, Meakin P, Hill AJ (2006) Structural and Free-volume Analysis for Alkyl-substituted Palladium-catalyzed Poly(norbornene): A Combined Experimental and Monte Carlo Investigation. Journal of Polymer Science Part B: Polymer Physics 44:215–233.

    Article  CAS  Google Scholar 

  48. Hergenrother PM, Watson KA, Smith JG, Connell JW, Yokota R (2002) Polyimides from 2,3,3',4'-Biphenyltetracarboxylic Dianhydride and Aromatic Diamines. Polymer 43:5077– 5093.

    Article  CAS  Google Scholar 

  49. Christopher WF, Fox DW (1962) Polycarbonates. Reinhold Publishing Corporation, New York .

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this paper

Cite this paper

Valavala, P.K., Odegard, G.M. (2009). Thermodynamically-Consistent Multiscale Constitutive Modeling of Glassy Polymer Materials. In: Pyrz, R., Rauhe, J.C. (eds) IUTAM Symposium on Modelling Nanomaterials and Nanosystems. IUTAM Bookseries, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9557-3_6

Download citation

Publish with us

Policies and ethics