Skip to main content

Fundamental Plasma Processes in Saturn's Magnetosphere

  • Chapter
Saturn from Cassini-Huygens

Abstract

In this chapter, we review selected fundamental plasma processes that control the extensive space environment, or magnetosphere, of Saturn (see Chapter 9, for the global context). This writing occurs at a point in time when some measure of maturity has been achieved in our understanding of the operations of Saturn's magnetosphere and its relationship to those of Earth and Jupiter. Our understanding of planetary magnetospheres has exploded in the past decade or so partly because of the presence of orbiting spacecraft (Galileo and Cassini) as well as remote sensing assets (e.g., Hubble Space Telescope). This book and chapter are intended to take stock of where we are in our understanding of Saturn's magnetosphere following the successful return and analysis of extensive sets of Cassini data. The end of the prime mission provides us with an opportunity to consolidate older and newer work to provide guidance for continuing investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilleos N et al. (2006) Orientation, location, and velocity of Saturn's bow shock: Initial results from the Cassini spacecraft. J Geophys Res 111:A03201, doi: 10.1029/2005JA011297

    Google Scholar 

  • Akalin F (2005) Observation of a whistler in the magnetosphere of Saturn. M.S. thesis, University of Iowa, Iowa City, Iowa

    Google Scholar 

  • Akalin F, Gurnett DA, Averkamp TF, Persoon, AM, Santolik O, Kurth WS, Hospodarsky GB (2006) The first whistler observed in the magnetosphere of Saturn. Geophys Res Lett 33:L20107, doi: 10.1029/2006GL027019

    ADS  Google Scholar 

  • Alexeev II, Kalegaev VV, Belenkaya ES, Bobrovnikov SY, Bunce EJ, Cowley SWH, Nichols JD (2006), A global magnetic model of Saturn's magnetosphere and a comparison with Cassini SOI data. Geophys Res Lett 33:L08101, doi: 10.1029/2006GL025896

    Google Scholar 

  • Anderson JD, Schubert G (2007) Saturn's satellite Rhea is a homogeneous mix of rock and ice Geophys Res Lett 34:L02202, doi: 10.129/2006GL028100

    Google Scholar 

  • André N, Dougherty MK, Russell CT, Leisner JS, Khurana KK (2005) Dynamics of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers about small-scale plasma transport in the magnetosphere. Geophys Res Lett.32(14):L14S06.1–L14S06.5, doi: 10.1029/2005GL022643

    Google Scholar 

  • André N et al. (2007) Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere. Geophys Res Lett 34:L14108, doi: 10.1029/2007GL030374

    ADS  Google Scholar 

  • Armstrong TP, Paonessa MT, Bell EV II, Krimigis SM (1983) Voyager observations of Saturnian ion and electron phase space densities. J Geophys Res 88:8893–8904

    ADS  Google Scholar 

  • Arridge CS, Russell CT, Khurana KK, Achilleos N, André N, Rymer AM, Dougherty MK, Coates AJ (2007) Mass of Saturn's mag-netodisc: Cassini observations. Geophys Res Lett 34:L09108, doi: 10.1029/2006GL028921

    Google Scholar 

  • Arridge CS, Russell CT, Khurana KK, Achilleosv, Cowley SWH, Dougherty MK, Southwood DJ, Bunce EJ (2008) Saturn's magnetodisc current sheet. J Geophys Res 113:A04214, doi: 10.1029/2007JA012540

    Google Scholar 

  • Ashour-Abdalla M, Kennel CF (1978) Nonconvective and convective electron cyclotron harmonic instabilities. J Geophys Res 83:1531–1543

    ADS  Google Scholar 

  • Badman SV, Cowley SWH (2007) Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines Ann Geophys 25:941

    ADS  Google Scholar 

  • Bagenal F (1997) The ionization source near Io from Galileo wake data Geophys Res Lett 24:2111

    ADS  Google Scholar 

  • Barbosa DD (1986) Medium energy electrons and heavy ions in Jupiter's magnetosphere: Effects of lower hybrid wave-particle interactions. J Geophys Res 91:5605–5615

    ADS  Google Scholar 

  • Barbosa DD (1987) Titan's atomic nitrogen torus: Inferred properties and consequences for the Saturnian aurora. Icarus 72:53–61

    ADS  Google Scholar 

  • Barbosa DD (1994) Neutral cloud theory of the Jovian nebula: Anomalous ionization effect of superthermal electrons Astrophys J 430:376–386

    ADS  Google Scholar 

  • Belcher JW (1983) The low-energy plasma in the Jovian magnetosphere In: Dessler AJ (ed) Physics of the Jovian magnetosphere, pp 68–105. Cambridge, New York

    Google Scholar 

  • Belcher JW, McNutt RL Jr, Richardson JD, Selesnick RS, Sittler EC Jr, Bagenal F (1991) The plasma environment of Uranus. In Bergstrahl JT, Miner ED, Matthews MS (eds) Uranus, p 780. University of Arizona Press, Tucson

    Google Scholar 

  • Bertucci C, Achilleos N, Mazelle C, Hospodarsky GB, Thomsen M, Dougherty MK, Kurth W (2007) Low-frequency waves in the foreshock of Saturn: First results from Cassini. J Geophys Res 112:A09219, doi: 10.1029/2006JA012098

    Google Scholar 

  • Birch PC, Chapman SC (2001) Detailed structure and dynamics in particle in-cell simulations of the lunar wake Physics of Plasmas 8:4551–4559, doi: 10.1063/1.1398570

    ADS  Google Scholar 

  • Bolton SJ, Thorne RM, Gurnett DA, Kurth WS, Williams DJ (1997) Enhanced whistler-mode emissions: Signatures of interchange motion in the Io torus. Geophys Res Lett 24:2123–2126

    ADS  Google Scholar 

  • Borovsky JE (1993) Auroral arc thicknesses as predicted by various theories. J Geophys Res 98(A4):6101–6138

    ADS  Google Scholar 

  • Bortnik J, Thorne RM (2007) The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J Atmos Sol Terr Phys 69:378–386

    ADS  Google Scholar 

  • Bouhram M, Johnson RE, Berthelier J-J, Illiano J-M, Tokar RL, Young DT, Crary FJ (2006) A test-particle model of the atmosphere/ionosphere system of Saturn's main rings. Geophys Res Lett 33:L05106, doi: 10.1029/2005GL025011

    Google Scholar 

  • Boyle CB, Reiff PH, Hairston MR (1997) Empirical polar cap potentials. J Geophys Res 102:111–125

    ADS  Google Scholar 

  • Brandt PC, Paranicas CP, Carbary JF, Mitchell DG, Mauk BH, Krimigis SM (2008) Understanding the global evolution of Saturn's ring current. Geophys Res Lett 35:L17101, doi: 10.1029/2008GL034969

    ADS  Google Scholar 

  • Brice NM, Ioannidis GA (1970) The magnetospheres of Jupiter and Earth. Icarus 13:173–183

    ADS  Google Scholar 

  • Bunce EJ, Cowley SWH, Wright DM, Coates AJ, Dougherty MK, Krupp N, Kurth WS, Rymer AM (2005a) In situ observations of a solar wind compression induced hot plasma injection in Saturn's tail. Geophys Res Lett 32:L20S04, doi: 10.1029/2005GL022888

    Google Scholar 

  • Bunce EJ, Cowley SWH, Milan SE (2005b) Interplanetary magnetic field control of Saturn's polar cusp aurora. Annal Geophys 23:1405–1431

    ADS  Google Scholar 

  • Bunce EJ, Cowley SWH, Alexeev II, Arridge CS, Dougherty MK, Nichols JD, Russell CT (2007) Cassini observations of the variation of Saturn's ring current parameters with system size. J Geophys Res 112:A10202, doi: 10.1029/2007JA012275

    ADS  Google Scholar 

  • Burch JL, Goldstein J, Hill TW, Young DT, Crary FJ, Coates AJ, André N, Kurth WS, Sittler EC Jr (2005) Properties of local plasma injections in Saturn's magnetosphere Geophys Res Lett 32:L14S02, doi: 10.1029/2005GL022611

    Google Scholar 

  • Burch JL, Goldstein J, Lewis WS, Young DT, Coates AJ, Dougherty MK, André N (2007) Tethys and Dione as sources of outward-flowing plasma in Saturn's magnetosphere. Nature 447 (14 June 2007), doi: 10.1038/nature05906

    Google Scholar 

  • Burch JL, Goldstein J, Mokashi P, Lewis WS, Paty C, Young DT, Coates AJ, Dougherty MK, André N (2008) On the cause of Saturn's plasma periodicity. Geophys Res Lett 35:L14105, doi: 10.1029/2008GL034951

    ADS  Google Scholar 

  • Burger MH, Sittler EC Jr, Johnson RE, Smith HT, Tucker OJ, Shematovich VI (2007) Understanding the escape of water from Enceladus. J Geophys Res 112:A06219, doi: 10.1029/ 2006JA012086

    Google Scholar 

  • Burns JA, Showalter MR, Cuzzi JN, Durisen RH (1983) Saturn's electrostatic discharges: Could lightning be the cause? Icarus 54:280–295

    ADS  Google Scholar 

  • Burton RK, McPherron RL et al. (1975) An empirical relationship between interplanetary conditions and Dst J Geophys Res. 80: (31) 4204–4214

    ADS  Google Scholar 

  • Calvin WM, Johnson RE, Spencer JR (1996) O2 on Ganymede: Spectral characteristics and plasma formation mechanisms. Geophys Res Lett 23:673–676

    ADS  Google Scholar 

  • Carbary JF, Krimigis SM, Ip W-H (1983) Energetic particle microsig-natures of Saturn's satellites J Geophys Res 88:8947–8958

    ADS  Google Scholar 

  • Carbary JF, Mitchell DG, Krimigis SM, Hamilton DC, Krupp N (2007a) Charged particle periodicities in Saturn's outer magnetosphere J Geophys Res, doi: 10.1029/2007JA012351

    Google Scholar 

  • Carbary JF, Mitchell DG, Krimigis SM, Krupp N (2007b) Evidence for spiral pattern in Saturn's magnetosphere using the new SKR longitudes. Geophys Res Lett doi 10.1029/2007GL030167

    Google Scholar 

  • Chen FF (1974) Introduction to plasma physics and controlled fusion; Volume 1: Plasma physics. Plenum, New York and London

    Google Scholar 

  • Chen Y, Hill TW (2008) Statistical analysis of injection/dispersion events in Saturn's inner magnetosphere. J Geophys Res 113:A07215, doi: 10.1029/2008JA013166

    Google Scholar 

  • Cheng AF, Krimigis SM, Lanzerotti LJ (1991) Energetic particles at Uranus. In: Bergstrahl JT, Miner ED, Matthews MS (eds) Uranus, p 831, University of Arizona Press, Tucson

    Google Scholar 

  • Coates, AJ, Jones GH, Lewis GR, Wellbrock A, Young DT, Crary FJ, Johnson RE, Cassidy TA, Hill TW (2009) Negative ions in the Ence-ladus plume. Icarus, accepted

    Google Scholar 

  • Connerney JEP, Acuña MH, Ness NF (1981) Saturn's ring current and inner magnetosphere. Nature 292:724–726, doi: 10.1038/292724a0

    ADS  Google Scholar 

  • Cooper JF (1983) Nuclear cascades in Saturn's rings — Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J Geophys Res 88:3945–3954

    ADS  Google Scholar 

  • Coroniti FV, Scarf FL, Kennel CF, Kurth WS (1984) Analysis of chorus emissions at Jupiter. J Geophys Res 89:3801–3820

    ADS  Google Scholar 

  • Cowee MM, Strangeway RJ, Russell CT, Winske D (2006) One-dimensional hybrid simulations of planetary ion pickup: Techniques and verification. J Geophys Res 111:A12213, doi: 10.1029/2006JA011996

    ADS  Google Scholar 

  • Cowee MM, Russell CT, Strangeway RJ, Blanco-Cano X (2007) One-dimensional hybrid simulations of obliquely propagating ion cyclotron waves: Application to ion pickup at Io. J Geophys Res 112:A06230, doi: 10.1029/2006JA012230

    Google Scholar 

  • Cowley SWH, Bunce EJ, O'Rourke JM (2004) A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere. J Geophys Res 109:A05212, doi: 10.1029/2003JA010375

    Google Scholar 

  • Cui J, Yelle RV, Volk K (2008) Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere J Geophys Res 113:E10004, doi: 10.1029/2007JE003032

    ADS  Google Scholar 

  • De La Haye et al. (2007) Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona. J Geophys Res 112:A07309, doi: 10.1029/2006JA012222

    Google Scholar 

  • Delamere PA, Bagenal F, Ergun R, Su Y-J (2003) Momentum transfer between the Io plasma wake and Jupiter's ionosphere. J Geophys Res 108(A6):1241, doi: 10.1029/2002JA009530

    Google Scholar 

  • Delamere PA, Bagenal F, Dols V, Ray LC (2007) Saturn's neutral torus versus Jupiter's plasma torus. Geophys Res Lett 34:L09105, doi: 10.1029/2007GL029437

    Google Scholar 

  • Delcourt DC (2002) Particle acceleration by inductive electric fields in the inner magnetosphere. J Atmos Sol Terr Phys 64:551–559

    ADS  Google Scholar 

  • Delcourt DC, Sauvaud JA, Pedersen A (1990) Dynamics of single-particle orbits during substorm expansion phase. J Geophys Res 95:20,853

    Google Scholar 

  • Desch MD et al. (2006) Cassini RPWS and imaging observations of Saturn lightning. In: Rucker HO, Kurth WS, Mann G (eds) Planetary radio emissions VI, pp 103– 110. Austrian Academy of Sciences, Vienna

    Google Scholar 

  • Dougherty MK et al. (2004) The Cassini magnetic field investigation Space Sci Rev 114:331–383

    ADS  Google Scholar 

  • Dougherty MK et al. (2005) Cassini magnetometer observation during Saturn orbit insertion Science 307:1266–1269

    ADS  Google Scholar 

  • Dougherty MK, Khurana KK, Neubauer FM, Russell CT, Saur J, Leisner JS, Burton ME (2006) Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer Science 311:1406–1409

    ADS  Google Scholar 

  • Drake JF, Shay MA, Thongthai W, Swisdak M (2005) Production of energetic electrons during magnetic reconnection. Phys Rev Lett 94:095001

    ADS  Google Scholar 

  • Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47–48

    ADS  Google Scholar 

  • Esposito LW, Colwell JE, Larsen K et al. (2005) Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307:1251–1255

    ADS  Google Scholar 

  • Eviatar A, Richardson JD (1986) Corotation of the Kronian magnetosphere. J Geophys Res 91:3299–3301

    ADS  Google Scholar 

  • Farrell WM, Kurth WS, Kaiser ML, Desch MD, Gurnett DA, Canu P (2005) Narrowband Z-mode emissions interior to Saturn's plasma torus, J Geophys Res 110:A10204, doi: 10.1029/2005JA011102

    ADS  Google Scholar 

  • Farrell WM, Kaiser ML, Gurnett DA, Kurth WS, Persoon AM, Wahlund JE, Canu P (2008) Mass unloading along the inner edge of the Enceladus plasma torus. Geophys Res Lett 35:L02203, doi: 10.1029/2007GL032306

    Google Scholar 

  • Farmer A (2008) Saturn in hot water: Viscous evolution of the Ence-ladus torus. Saturn after Cassini Workshop, London, 28 July

    Google Scholar 

  • Fillius W (1976) The trapped radiation belts of Jupiter. Gehrels T (ed) Jupiter p 896, University of Arizona Press, Tucson

    Google Scholar 

  • Fischer GM et al. (2006) Saturn lightning recorded by Cassini/RPWS in 2004. Icarus 183(1):135–152, doi: 10.1016/j.icarus.2006.02.010

    ADS  Google Scholar 

  • Fischer G, Kurth WS, Dyudina UA, Kaiser ML, Zarka P, Lecacheux A, Ingersoll AP, Gurnett DA (2007) Analysis of a giant lightning storm on Saturn. Icarus 190:528–544, doi: 10.1016/j.icarus.2007.04.002

    ADS  Google Scholar 

  • Fischer G, Gurnett DA, Kurth WS, Akalin F, Zarka P, Dyudina UA, Farrell WM, Kaiser ML (2008) Atmospheric electricity at Saturn. Space Sci Rev 137:271–285, doi: 10.1007/s11214–008–9370-z

    ADS  Google Scholar 

  • Fleshman BL, Delamere PA, Bagenal F (2008) A one-box chemistry model of the Enceladus torus: Preliminary results and sensitivity. Saturn after Cassini Workshop, London, July

    Google Scholar 

  • Fox NJ, Mauk BH, Blake JB (2006) Role of non-adiabatic processes in the creation of the outer radiation belts. Geophys Res Lett 33:L18108, doi: 10.1029/2006GL026598

    ADS  Google Scholar 

  • Frank LA, Paterson WR (2004) Plasmas observed near local noon in Jupiter's magnetosphere with the Galileo spacecraft. J Geophys Res 109:A11217, doi: 10.1029/2002JA009795

    ADS  Google Scholar 

  • Ge YS, Jian LK, Russell CT (2007) Growth phase of Jovian substorms. Geophys Res Lett 34:L23106, doi: 10.1029/2007GL031987

    ADS  Google Scholar 

  • Gehrels N, Stone EC (1983) Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contributions to the auroral excitation. J Geophys Res 88:5537

    ADS  Google Scholar 

  • Gerard J-C, Bunce EJ, Grodent D, Cowley SWH, Clarke JT, Badman SV (2005) Signature of Saturn's auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J Geophys Res 110:A11201, doi: 10.1029/2005JA011094

    ADS  Google Scholar 

  • Giampieri G, Dougherty MK, Smith EJ, Russell CT (2006) A regular period for Saturn's magnetic field that may track its internal rotation. Nature 441:62–64, doi: 10.1038/nature04750

    ADS  Google Scholar 

  • Glocer A et al. (2007) Polar wind outflow model: Saturn results. J Geo-phys Res 112:A01304, doi: 10.1029/2006JA011755

    Google Scholar 

  • Gold T (1959) Motions in the magnetosphere of the Earth. J Geophys Res 64:1219–1224

    ADS  Google Scholar 

  • Goldreich P, Lynden-Bell D (1969) Io, a Jovian unipolar inductor. As-trophys J 156:59–78

    ADS  Google Scholar 

  • Goldreich P, Farmer AJ (2007) Spontaneous axisymmetry breaking of the external magnetic field at Saturn. J Geophys Res 112:A05225, doi: 10.1029/2006JA012163

    Google Scholar 

  • Goldstein BE, Ip W-H (1983) Magnetic drifts at Io: Depletion of 10-MeV electrons at Voyager 1 encounter due to a forbidden zone. J Geophys Res 88:6137

    ADS  Google Scholar 

  • Gurnett D (1975) The Earth as a radio source: The nonthermal continuum. J Geophys Res 80:2751–2763

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL (1981a) Plasma waves near Saturn: Initial results from Voyager 1. Science, 212:235–239

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL (1981b) Narrowband electromagnetic emissions from Saturn's magnetosphere. Nature 292:733

    ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL (1983) Narrowband electromagnetic emissions from Jupiter's magnetosphere. Nature 302:385

    ADS  Google Scholar 

  • Gurnett DA et al. (2004) The Cassini radio and plasma wave science investigation. Space Sci Rev 114:395–463

    ADS  Google Scholar 

  • Gurnett DA et al. (2005) Radio and plasma wave observations at Saturn from Cassini's Approach and first orbit. Science 307:1255–1259, doi: 10.1126/science.1105356

    ADS  Google Scholar 

  • Gurnett DA, Persoon AM, Kurth WS, Groene JB, Averkamp TF, Dougherty MK, Southwood DJ (2007) The variable rotation period of the inner region of Saturn's plasma disk. Science 316(5823):442–445, doi: 10.1126/science.1138562

    ADS  Google Scholar 

  • Hamilton DC, Brown DC, Gloeckler G, Axford WI (1983) Energetic atomic and molecular ions in Saturn's magnetosphere. J Geophys Res 88:8905–8922

    ADS  Google Scholar 

  • Hamilton DC et al. (2009a) The major species of Saturn's ring current and their average spectra. Geophys Res Lett. submitted

    Google Scholar 

  • Hamilton DC, DiFabio RD, Christon SP, Krimigis SM, Mitchell DG, Dandouras J (2009b) Suprathermal heavy ions in Saturn's magnetosphere. Geophys Res Lett. submitted

    Google Scholar 

  • Hamilton DC, DiFabio RD, Mitchell DG, Krimigis SM (2009c) Suprathermal H+ 3 in Saturn's magnetosphere. Geophys Res Lett. submitted

    Google Scholar 

  • Hansen KC, Ridley AJ, Hospodarsky GB, Dougherty MK, Gombosi TI, Toth G (2005) Global MHD simulations of Saturn's magnetosphere at the time of Cassini approach. Geophys Res Lett 32:L20S06, doi: 10.1029/2005GL022835

    Google Scholar 

  • Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus' water vapor plume. Science 311:1422

    ADS  Google Scholar 

  • Hartle RE et al. (2006) Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Geophys Res Lett 33:L08201, doi: 10.1029/2005GL024817

    Google Scholar 

  • Herbert F, Sandel BR (1995) Radial profiles of ion density and parallel temperature in the Io plasma torus during the Voyager 1 encounter. J Geophys Res 100(a10):19,513–19,529

    ADS  Google Scholar 

  • Hill TW (1979) Inertial limit on corotation. J Geophys Res 84:6554–6558

    ADS  Google Scholar 

  • Hill TW, Michel FC (1976) Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J Geophys Res 81:4561–4565

    ADS  Google Scholar 

  • Hill TW, Pontius DH Jr (1998) Plasma injection near Io. J Geophys Res 103:19,879

    Google Scholar 

  • Hill TW, Vasyliūnas VM (2002) Jovian auroral signature of Io's coro-tational wake. J Geophys Res (Space Phys), 107(A12):SMP 271, CiteID 1464, doi 10.1029/2002JA009514

    Google Scholar 

  • Hill TW et al (2005) Evidence for rotationally driven plasma transport in Saturn's magnetosphere Geophys Res Lett 32:L14S10, doi: 10.1029/2005GL022620

    Google Scholar 

  • Hill TW et al. (2008a) Plasmoids in Saturn's magnetotail. J Geophys Res 113:A01213, doi: 10.1029/2007JA012626

    Google Scholar 

  • Hill TW, Chen Y, Wu H, Johnson RE, Mauk BH (2008b) Injection structures in Saturn's inner magnetosphere (poster). Saturn After Cassini-Huygens Symposium, Imperial College, London, 28 July–1 August

    Google Scholar 

  • Horne RB, Thorne RM (2000) Electron pitch angle diffusion by electrostatic electron cyclotron waves: the origin of pancake distributions. J Geophys Res 105:5391–5402

    ADS  Google Scholar 

  • Horne RB, Thorne RM (2003) Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys Res Lett 30(10):1527, doi: 10.1029/2003GL016973

    ADS  Google Scholar 

  • Horne RB, Thorne RM, Meredith NP, Anderson RR (2003) Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J Geophys Res 108(A7):1290, doi: 10.1029/2002JA009736

    Google Scholar 

  • Horne RB et al. (2005) Wave acceleration of electrons in the Van Allen radiation belts. Nature 437:227–230

    ADS  Google Scholar 

  • Horne RB, Thorne RM, Glauert SA, Menietti JD, Shprits YY, Gurnett DA (2008) Gyro-resonant electron acceleration at Jupiter. Nature Phys 4:301

    Google Scholar 

  • Hoshino M (2005) Electron surfing acceleration in magnetic reconnec-tion. J Geophys Res 110:A10215, doi: 10.1029/2005JA011229

    ADS  Google Scholar 

  • Hospodarsky GB, Averkamp TF, Kurth WS, Gurnett DA, Dougherty M, Inan U, Wood T (2001) Wave normal and Poynting vector calculations using the Cassini radio and plasma wave instrument. J Geo-phys Res 106:30, 253–30, 269

    ADS  Google Scholar 

  • Hospodarsky GB, Kurth WS, Gurnett DA, Zarka P, Canu P, Dougherty M, Jones GH, Coates A, Rymer A (2006) Observations of Langmuir waves detected by the Cassini spacecraft. In: Rucker HO, Kurth WS, Mann G (eds) Planetary radio emissions VI, pp 67–79. Austrian Academy of Sciences Press, Vienna

    Google Scholar 

  • Hospodarsky GB, Averkamp TF, Kurth WS, Gurnett DA, Santolik O, Dougherty MK (2008) Observations of chorus at Saturn using the Cassini radio and plasma wave instrument. J Geophys Res 113:A12206, doi: 10.1029/2008JA013237

    ADS  Google Scholar 

  • Huang TS, HillTW (1991) Drift-wave instability in the Io plasma torus. J Geophys Res 96:14,075–14,083

    ADS  Google Scholar 

  • Huddleston DE, Russell CT et al. (1997) Magnetopause structure and the role of reconnection at the outer planets. J Geophys Res 102:24,289–24,302

    ADS  Google Scholar 

  • Huddleston DE, Strangeway RJ, Warnecke J, Russell CT, Kivelson MG (1998) Ion cyclotron waves in the Io torus: Wave dispersion, free energy analysis, and SO2 + source rate estimates. J Geophys Res 103:19,887–19,889

    ADS  Google Scholar 

  • Jackman CM, Achilleos N, Bunce EJ, Cowley SWH, Dougherty MK, Jones GH, Milan SE, Smith EJ (2004) Interplanetary magnetic field at ~9AU during the declining phase of the solar cycle and its implications for Saturn's magneto spheric dynamics. J Geophys Res 109:A11203, doi: 10.1029/2004JA010614

    ADS  Google Scholar 

  • Jackman CM, Russell CT, South wood DJ, Arridge CS, Achilleos N, Dougherty MK (2007) Strong, rapid depolarization in Saturn's magnetotail: In situ evidence of reconnection. Geophys Res Lett 34:L11203, doi: 10.1029/2007GL029764

    ADS  Google Scholar 

  • Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Johnson RE (1990) Energetic charged particle interactions with atmospheres and surfaces. Springer, New York

    Google Scholar 

  • Johnson RE (2009) Sputtering and heating of Titan's upper atmosphere. Proc Royal Soc (London) 367:753–771, doi: 10.1098/ rsta. 2008.0244

    ADS  Google Scholar 

  • Johnson RE, Quickenden TI (1997) Photolysis and radiolysis of water ice on outer solar system bodies. J Geophys Res 102:10,985–10,996

    ADS  Google Scholar 

  • Johnson RE, Smith HT, Tucker OJ, Liu M, Burger MH, Sittler EC, Tokar RL (1989a) The Enceladus and OH tori at Saturn. Astrophys J 644:L137–L139

    ADS  Google Scholar 

  • Johnson RE, Pospieszalska MK, Sieveka EM, Cheng AF, Lanzerotti LJ, Sittler EC (1989b) The neutral cloud and heavy ion inner torus at Saturn. Icarus 77:311–329

    ADS  Google Scholar 

  • Johnson RE, Liu M, Sittler EC Jr (2005) Plasma-induced clearing and redistribution of material embedded in planetary magnetospheres. Geophys Res Lett 32:L24201, doi: 10.1029/2005GL024275

    ADS  Google Scholar 

  • Johnson RE et al. (2006a) Production, ionization and redistribution of O2 Saturn's ring atmosphere. Icarus 180:393–402

    ADS  Google Scholar 

  • Johnson RE, Smith HT, Tucker OJ, Liu M, Tokar R (2006b) The Enceladus and OH tori at Saturn. Astrophys J Letts 644:L137–L139

    ADS  Google Scholar 

  • Johnson RE, Fama M, Liu M, Baragiola RA, Sittler EC Jr, Smith HT (2008) Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere. Planet Space Sci 56:1238–1243

    ADS  Google Scholar 

  • Johnson RE, Tucker OJ, Michael M, Sittler EC, Smith HT, Young DT, Waite JH Jr (2009) Mass loss processes in Titan's upper atmosphere. In: Titan after Cassini Huygens, Chapter 15, in press

    Google Scholar 

  • Jones D (1976) Source of terrestrial nonthermal continuum radiation. Nature 260:686

    ADS  Google Scholar 

  • Jones GH, Roussos E, Krupp N, Paranicas C, Woch J, Lagg A, Mitchell DG, Krimigis SM Dougherty MK (2006a) Enceladus' Varying imprint on the magnetosphere of Saturn Science 311:1412–1415

    ADS  Google Scholar 

  • Jones, GH et al. (2006b) Formation of Saturn's ring spokes by lightning-induced electron beams. Geophys Res Lett 33:L21202, doi: 10.1029/2006GL028146

    ADS  Google Scholar 

  • Jones GH et al. (2008) The dust halo of Saturn's largest icy moon, Rhea. Science. doi: 10.1126/science.1151524

    Google Scholar 

  • Jurac S, Richardson JD (2005) A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J Geophys Res 110, doi: 10.1029/2004JA010635

    Google Scholar 

  • Jurac S, Johnson RE, Richardson JD (2001) Saturn's E ring and production of the neutral torus. Icarus 149:384–396

    ADS  Google Scholar 

  • Jurac S, McGrath MA, Johnson RE, Richardson JD, Vasyliūnas VM, Eviatar A (2002) Saturn: Search for a missing water source. Geo-phys Res Lett 29(24):2172, doi: 10.1029/2002GL015855

    ADS  Google Scholar 

  • Kaiser ML, Desch MD (1980) Narrow-band Jovian kilometric radiation: A new radio component. Geophys Res Lett 7:389–393

    ADS  Google Scholar 

  • Kaiser ML, Desch MD, Warwick JW, Pierce JB (1980) Voyager detection of nonthermal radio emission from Saturn. Science 209:1238–1240

    ADS  Google Scholar 

  • Kaiser ML, Connerney, JEP Desch MD (1983) Atmospheric storm explanation of saturnian electrostatic discharges. Nature 303:50–53, doi: 10.1038/303050a0

    ADS  Google Scholar 

  • Kaiser ML, Desch MD, Kurth WS, Lecacheux A, Genova F, Pedersen BM, Evans DR (1984) Saturn as a radio source. In: Gehrels T (ed) Saturn, p 378–416. University of Arizona Press, Tucson

    Google Scholar 

  • Kalio et al (2005) Formation of the lunar wake in quasi-neutral hybrid model. Geophys Res Lett 32:L06107, doi: 10.1029/2004GL021989

    Google Scholar 

  • Kellett S, Bunce EJ, Cowley SWH, Dougherty MK, Krimigis SM, Sergis N (2008) Investigations into Saturn's ring current. Saturn after Cassini Workshop, London, July

    Google Scholar 

  • Kennel CF, Scarf FL, Fredricks RW, McGehee JH, Coroniti FV (1970) VLF electric field observations in the magnetosphere. J Geophys Res 75:6136

    ADS  Google Scholar 

  • Khurana KK et al (2004) Configuration of Jupiter's magnetosphere In: Bagenal F, Dowling T, McKinnon W (eds) Jupiter: The planet, satellites and magnetosphere, pp 513–536 Cambridge University Press, Cambridge

    Google Scholar 

  • Khurana KK, Russell CT, Dougherty MK (2007a) Magnetic portraits of Tethys and Rhea Icarus 465–477

    Google Scholar 

  • Khurana KK, Dougherty MK, Russell CT, Leisner JS (2007b) Mass loading of Saturn's magnetosphere near Enceladus. J Geophys Res 112(A8), doi: 10.1029/2006JA012110

    Google Scholar 

  • Khurana KK, Russell CT, Dougherty MK (2008) Magnetic portraits of Tethys and Rhea. Icarus 193:465–474, doi: 10.1016/ j.icarus2007.08.005

    ADS  Google Scholar 

  • Kivelson MG, Khuran KK, Coronitti FV, Joy S, Russell CT, Walker RJ, Warneck J, Bennettand L, Polansk C (1997a) The magnetic field and magnetosphere of Ganymede. Geophys Res Lett 24:2155–2158

    ADS  Google Scholar 

  • Kivelson MG, Khurana KK, Joy S, Russell CT, Southwood DJ, Walker RJ, Polanskey C (1997b) Europa's magnetic signature: Report from Galileo's pass on 19 December 1996. Science 276:1239–1241, doi: 10.1126/science.276.5316.1239

    ADS  Google Scholar 

  • Kivelson MG, Khurana KK, Russell CT, Walker RJ (1997c) Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophys Res Lett 24:2127–2130

    ADS  Google Scholar 

  • Kivelson MG, Bagenal F, Kurth W, Neubauer FM, Paranicas C, Saur J (2004) Magnetospheric interactions with satellites In: Bage-nal F, Dowling T, McKinnon W (eds) Jupiter: The planet, satellites and magnetosphere, pp 513–536 Cambridge University Press, Cambridge

    Google Scholar 

  • Krall NA, Trivelpiece AW (1973) Principles of plasma physics. McGraw-Hill Book, New York

    Google Scholar 

  • Kriegel H, Simon S, Wiehle S, Kleindienst G, Motschmann U, Glassmeier K, Saur J, Khurana KK, Dougherty MK (2008) Hybrid Simulations of the Enceladus plasma interaction and comparison with MAG data. AGU Fall Meeting Abstracts

    Google Scholar 

  • Krimigis SM et al. (2005) Dynamics of Saturn's magnetosphere from MIMI during Cassini's orbital insertion Science 307(5713) 1270–1273

    ADS  Google Scholar 

  • Krimigis SM, Sergis N, Mitchell DG, Hamilton DC, Krupp N (2007) A dynamic, rotating ring current around Saturn. Nature 450, doi:10.38/nature06425

    Google Scholar 

  • Krupp N et al. (2004) Dynamics of the Jovian magnetosphere. In: Bage-nal F, Dowling TE, McKinnon WB (eds) Jupiter, pp 617–638. Cambridge University Press, Cambridge

    Google Scholar 

  • Kurt WK, Scarf FL, Sullivan JD, Gurnett DA (1982) Detection of non-thermal continuum radiation in Saturn's magnetosphere. Geophys Res Lett 9:889

    ADS  Google Scholar 

  • Kurth WS (1982) Detailed observations of the source of terrestrial narrowband electromagnetic radiation. Geophys Res Lett 9:1341–1344

    ADS  Google Scholar 

  • Kurth WS, Gurnett DA (1991) Plasma waves in Planetary magnetospheres. J Geophys Res 96:18,977

    ADS  Google Scholar 

  • Kurth W, Gurnett D, Anderson R (1981) Escaping nonthermal continuum radiation. J Geophys Res 86:5519–5531

    ADS  Google Scholar 

  • Kurth WS, Scarf FL, Gurnett DA, Barbosa DD (1983) A survey of electrostatic waves in Saturn's magnetosphere. J Geophys Res 88:8959

    ADS  Google Scholar 

  • Kurth WS, Gurnett DA, Scarf FL (1986) Sporadic narrowband radio emissions from Uranus. J Geophys Res 91:11,958–11,964

    ADS  Google Scholar 

  • Kurth WS, Barbosa DD, Gurnett DA, Poynter RL, Cairns IH (1990) Low-frequency radio emissions at Neptune. Geophys Res Lett 17:1649–1653

    ADS  Google Scholar 

  • Kurth WS, Gurnett DA, Roux A, Bolton SJ (1997) Ganymede: A new radio source. Geophys Res Lett 24:2167–2170

    ADS  Google Scholar 

  • Kurth WS, Lecacheux A, Averkamp TF, Groene JB, Gurnett DA (2007) A Saturnian longitude system based on a variable kilometric radiation period. Geophys Res Lett. doi: 10.1029/2006GL028336

    Google Scholar 

  • Kurth WS, Averkamp TF, Gurnett DA, Groene JB, Lecacheux A (2008) An update to a Saturnian longitude system based on kilometric radio emissions. J Geophys Res. doi: 10.1029/2007JA012861

    Google Scholar 

  • Leisner JS, Russell CT, Dougherty MK, Blanco-Cano X, Strangeway RJ, Bertucci C (2006) Ion cyclotron waves in Saturn's E ring: Initial Cassini observations. Geophys Res Lett 33:L11101, doi: 10.1029/2005GL024875

    ADS  Google Scholar 

  • Li W, Shprits YY, Thorne RM (2007) Dynamical evolution of energetic electrons due to wave-particle interactions during storms. J Geophys Res 112:A10220, doi: 10.1029/2007JA012368

    ADS  Google Scholar 

  • Loeffler MJ, Teolis B, Baragiola RA (2006) A model study of the thermal evolution of astrophysical ices. Astrophys J 639(2): L103–L106

    ADS  Google Scholar 

  • Louarn P et al. (2007) Observation of similar radio signatures at Saturn and Jupiter: Implications for the magnetospheric dynamics. Geo-phys Res Lett 34:L20113, doi: 10.1029/2007GL030368

    ADS  Google Scholar 

  • Luhmann JG, Johnson RE, Tokar RL, Cravens T (2006) A model of the ionosphere of Saturn's toroidal ring atmosphere. Icarus 181:465–474

    ADS  Google Scholar 

  • Lyons LR (1974) Electron diffusion driven by magnetospheric electrostatic waves. J Geophys Res 79:557

    ADS  Google Scholar 

  • Lysak R (1993), Auroral plasma dynamics, Geophysical monograph 80. American Geophysical Union, Washington DC

    Google Scholar 

  • Martens HR, Reisenfeld DB, Williams JD, Johnson RE, Smith HT (2008) Observations of molecular oxygen ions in Saturn's inner magnetosphere. Geophys Res Lett, 35:L20103, doi: 10.1029/2008GL035433

    ADS  Google Scholar 

  • Masters A, Achilleos N, Dougherty MK, Slavin JA, Hospodarsky GB, Arridge CS, Coates AJ (2008) An empirical model of Saturn's bow shock: Cassini observations of shock location and shape. J Geophys Res 113:A10210, doi: 10.1029/2008JA013276

    ADS  Google Scholar 

  • Mauk BH (1986) Quantitative modeling of the “convection surge” mechanism of ion acceleration. J Geophys Res 91:13,423

    Google Scholar 

  • Mauk BH (1989) Macroscopic magnetospheric particle acceleration. Solar system plasma physics, Geophysical monograph 54, p 319. American Geophysical Union, Washington DC

    Google Scholar 

  • Mauk BH, Krimigis SM (1987) Radial force balance in Jupiter's day-side magnetosphere. J Geophys Res 92:9931

    ADS  Google Scholar 

  • Mauk BH, Krimigis SM, Lepping RP (1985) Particle and field stress balance within a planetary magnetosphere. J Geophys Res 90:8253

    ADS  Google Scholar 

  • Mauk BH, Krimigis SM, Cheng AF, Selesnick RS (1995) Energetic particles and hot plasmas of Neptune. In: Cruikshank DP (ed) Neptune and Triton, p 169. The University of Arizona Press, Tucson

    Google Scholar 

  • Mauk BH, Williams DJ, McEntire RW, Khurana KK, Roederer JG (1999) Storm-like dynamics of Jupiter's inner and middle magnetosphere. J Geophys Res 104:22,759–22,778

    ADS  Google Scholar 

  • Mauk BH, Mitchell DG, McEntire RW, Paranicas CP, Roelof EC, Williams DJ, Krimigis SM, Lagg A (2004) Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. J Geophys Res 109:A09S12, doi: 10.1029/2003JA010270

    Google Scholar 

  • Mauk BH et al. (2005) Energetic particle injections in Saturn's magnetosphere. Geophys Res Lett 32(14):L14S05.1–L14S05.5, doi: 10.1029/2005GL022485

    Google Scholar 

  • Maurice S, Blanc M, Prange R, Sittler EC Jr (1997) The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn Planet Space Sci 45(11):1449–1465

    ADS  Google Scholar 

  • McAndrews HJ et al. (2008a) Plasma in the nightside magnetosphere and the implications for global circulation (poster). Saturn After Cassini-Huygens Symposium, Imperial College, London, 28 July–1 August

    Google Scholar 

  • McAndrews HJ, Owens CJ, Thomsen MF, Lavraud B, Coates AJ, Dougherty MK, Young DT (2008b) Evidence for reconnection at Saturn's magnetopause. J Geophys Res 113:A04210, doi: 10.1029/2007JA012581

    Google Scholar 

  • McNutt RL Jr (1984) Force balance in the outer planet magnetospheres. In: Bridge HS et al. (eds) Proc 1982–4 Symposia on the Physics of Space Plasmas, pp 179–210. Sci. Publ., Cambridge, Massachusetts

    Google Scholar 

  • Melin H, Shemansky DE, Liu X (2009) The distribution of hydrogen and atomic oxygen in the magnetosphere of Saturn. Planet Space Sci, in press, doi: 10.1016/j.pss.2009.04.014

    Google Scholar 

  • Menietti JD, Santolik O, Rymer AM, Hospodarsky GB, Persoon AM, Gurnett DA, Coates AJ, Young DT (2008a) Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere. J Geophys Res 113:A05213, doi: 10.1029/ 2007JA012856

    Google Scholar 

  • Menietti JD, Santolik O, Rymer AM, Hospodarsky GB, Gurnett DA, Coates AJ (2008b) Analysis of plasma waves observed in the inner Saturn magnetosphere. Annal Geophys 26:2631–2644

    ADS  Google Scholar 

  • Meredith NP, Cain M, Horne RB, Thorne RM, Summers D, Anderson RR (2003) Evidence for chorus-driven electron acceleration to rela-tivistic energies from a survey of geomagnetically disturbed periods. J Geophys Res 108(A6):1248, doi: 10.1029/2002JA009764

    Google Scholar 

  • Millward G, Miller S, Stallard T, Aylward A, Achilleos N (2002) On the dynamics of the Jovian ionosphere and thermosphere: III. The modeling of auroral conductivity. Icarus 160:95–107

    Google Scholar 

  • Mitchell DG et al. (2005) Energetic ion acceleration in Saturn's mag-netotail: Substorms at Saturn? Geophys Res Lett 32:L20S01, doi: 10.1029/2005GL022647

    Google Scholar 

  • Mitchell DG, Kurth WS, Hospodarsky GB, Krupp N, Saur J, Mauk BH, Carbary JF, Krimigis SM, Dougherty MK, Hamilton DC (2009) Ion conics and electron beams associated with auroral processes on Saturn. J Geophys Res 114:A02212, doi: 10.1029/2008JA013621

    Google Scholar 

  • Neubauer et al. (1998) The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J Geophys Res 103(E9):19,843–19,866, doi: 10.1029/97JE03370

    ADS  Google Scholar 

  • Noll KS, Johnson RE, Lane AL, Domingue DL, Weaver HA (1996) Detection of ozone on Ganymede. Science 273:341–343

    ADS  Google Scholar 

  • Noll KS, Roush TL, Cruikshank DP, Johnson RE, Pendleton YJ (1997) Detection of ozone on Saturn's satellites Rhea and Dione. Nature 38:45–47

    ADS  Google Scholar 

  • Northrop TG (1963) The adiabatic motion of charged particles. Inter-science, New York

    MATH  Google Scholar 

  • Paranicas C Cheng CF (1997) A model for satellite microsignatures for Saturn, Icarus 125:380–396

    ADS  Google Scholar 

  • Paranicas CP, Mauk BH, Krimigis SM (1991) Pressure anisotropy and radial stress balance in the Jovian neutral sheet. J Geophys Res 96:21,135

    ADS  Google Scholar 

  • Paranicas C, McEntire RW, Cheng AF, Lagg A, Williams DJ (2000) Energetic charged particles near Europa J Geophys Res 105(A7):16005–16016

    ADS  Google Scholar 

  • Paranicas C et al. (2005a) Evidence of Enceladus and Tethys microsig-natures, Geophys Res Lett 32, doi: 10.1029/2005GL024072

    Google Scholar 

  • Paranicas C, Mitchell DG, Roelof EC, Brandt PC, Williams DJ, Krimigis SM, Mauk BH (2005b) Periodic intensity variations in global ENA images of Saturn. Geophys Res Lett, doi: 10.1029/2005GL023656

    Google Scholar 

  • Paranicas C et al. (2007) Energetic electrons injected into Saturn's neutral cloud. Geophys Res Lett 34:L02109, doi: 2006GL028676

    Google Scholar 

  • Paranicas C et al. (2008) Sources and. losses of energetic protons in Saturn's magnetosphere. Icarus 197:519–525

    ADS  Google Scholar 

  • Parks GK (1991) Physics of space plasmas. Addison-Wesley, New York

    Google Scholar 

  • Paschmann G, Sonnerup BUö et al. (1979) Plasma acceleration at the Earth's magnetopause: Evidence for reconnection. Nature 282:243–246

    ADS  Google Scholar 

  • Persoon AM, Gurnett DA, Kurth WS, Hospodarsky GB, Groene JB, Canu P, Dougherty, MK (2005) Equatorial electron density measurements in Saturn's inner magnetosphere Geophys Res Lett 32:L23105, doi: 10.1029/2005GL024294

    ADS  Google Scholar 

  • Persoon AM, Gurnett DA, Kurth WS, Groene JB (2006) A simple scale height model of the electron density in Saturn's plasma disk. Geo-phys Res Lett 33:L18106, doi: 10.1029/2006GL027090

    ADS  Google Scholar 

  • Persoon AM et al. (2009) A diffusive equilibrium model for the plasma density in Saturn's magnetosphere. J Geophys Res 114:A04211, doi: 10.1029/2008JA013912

    Google Scholar 

  • Piddington JH, Drake JF (1968) Electrodynamic effects of Jupiter's satellite Io. Nature 217:935–937 (09 March), doi: 10.1038/217935a0

    ADS  Google Scholar 

  • Pontius DH Jr (1997) Coriolis influences on the interchange instability. Geophys Res Lett 24:1961–2964

    Google Scholar 

  • Pontius DH Jr, Hill TW (1982) Departure from corotation of the Io plasma torus: Local plasma production. Geophys Res Lett 9:1321–1324

    ADS  Google Scholar 

  • Pontius DH, Hill TW (2006) Enceladus: A significant plasma source for Saturn's magnetosphere. J Geophys Res 111(A9), doi: 10.1029/2006JA011674

    Google Scholar 

  • Pontius DH Jr, Hill TW, Tokar RL (2007) Inferring the radial profile of mass loading in Saturn's magnetosphere from the observed corota-tion lag (poster). Magnetospheres of the Outer Planets 2007 Conference, San Antonio, TX (June)

    Google Scholar 

  • Porco CC et. al (2006) Cassini observes the active south pole of Ence-ladus Science 311:1393–1401

    Google Scholar 

  • Pritchett PL (2006) Relativistic electron production during guide field magnetic reconnection. J Geophys Res. 111: A10212 doi: 10.1029/2006JA011793

    ADS  Google Scholar 

  • Quinn JM, Southwood DJ (1982) Observations of parallel ion energization in the equatorial region. J Geophys Res 87:10,536

    ADS  Google Scholar 

  • Ray LC, Ergun RE, Delamere PA, Bagenal F, Su Y (2008a) Effect of field aligned potentials on angular momentum transfer at Jupiter, American Geophysical Union, Fall Meeting, Paper SM41B-1675, San Franscisco (18 December)

    Google Scholar 

  • Ray LC, Ergun RE, Delamere PA, Bagenal F (2008b) Effect of field aligned potentials on magnetospheric dynamics at Saturn. Saturn after Cassini Workshop, London (28 July)

    Google Scholar 

  • Richardson J (1986) Thermal ions at Saturn: Plasma parameters and implications J Geophys Res 91:1381–1389

    ADS  Google Scholar 

  • Richardson J (1998) Thermal plasma and neutral gas in Saturn's magnetosphere. Rev Geophys 36:501–524

    ADS  Google Scholar 

  • Richardson JD, Eviatar A, McGrath MA, Vasyliūnas VM (1998) OH in Saturn's magnetosphere: Observations and implications. J Geophys Res 103:20,245–20,255

    ADS  Google Scholar 

  • Richardson JD, Belcher JW, Szabo A, McNutt RL Jr (1995) The plasma environment of Neptune. In: Cruikshank DP (ed) Neptune and Triton, p 279. The University of Arizona Press, Tucson

    Google Scholar 

  • Roederer JD (1970) Dynamics of geomagnetically trapped radiation. In: Physics and chemistry in space, Springer, Berlin

    Google Scholar 

  • Roussos E et al. (2005) Low energy electron microsignatures at the orbit of Tethys: Cassini MIMI/LEMMS observations Geophys Res Lett 32:L24107, doi: 10.1029/2005GL024084

    ADS  Google Scholar 

  • Roussos E et al. (2007) Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons J Geophys Res 112:A06214, doi: 10.1029/2006JA012027

    Google Scholar 

  • Roussos E, Müller J, Simon S, Bößwetter A, Motschmann U, Fränz M, Krupp N, Woch J, Khurana K, Dougherty MK (2008a) Plasma and fields in the wake of Rhea: 3D hybrid simulation and comparison with Cassini data. Ann Geophys, 26(3):619–637

    ADS  Google Scholar 

  • Roussos E, Krupp N, Armstrong TP, Paranicas C, Mitchell DG, Krimigis SM, Jones GH, Dialynas K, Sergis N, Hamilton DC (2008b) Discovery of a transient radiation belt at Saturn. Geophys Res Lett 35(22):L22106, doi: 10.1029/2008GL035767

    ADS  Google Scholar 

  • Russell CT, Blanco-Cano X (2007) Ion-cyclotron wave generation by planetary ion pickup. J Atmos Solar Terr Phys 69:1723–1738

    Google Scholar 

  • Russell CT, Elphic RC (1978) Initial ISEE magnetometer results: Mag-netopause observations. Space Sci Rev 22(6):681–715

    ADS  Google Scholar 

  • Russell CT, Huddleston DE, Khurana KK, Kivelson MG (1999) Observations at the inner edged of the Jovian current sheet: Evidence for a dynamic magnetosphere. Planet Space Sci 47:521–527

    ADS  Google Scholar 

  • Russell CT, Kivelson MG, Kurth WS, Gurnett DA (2000) Implications of depleted flux tubes in the Jovian magnetosphere. Geophys Res Lett 27(19):3133–3136

    ADS  Google Scholar 

  • Russell CT, Kivelson MG, Khurana KK (2005) Statistics of depleted flux tubes in the Jovian magnetosphere. Planet Space Sci 53(9):937–943, doi: 10.1016/j.pss.2005.04.007

    ADS  Google Scholar 

  • Russell CT, Leisner JS, Arridge CS, Dougherty MK, Blanco-Cano X (2006) Nature of magnetic fluctuations in Saturn's middle magnetosphere. J Geophys Res 111:A12205, doi: 10.1029/2006JA011921

    ADS  Google Scholar 

  • Russell CT, Jackman CM, Wei, HY Bertucci C, Dougherty MK (2008) Titan's influence on Saturnian substorm occurrence. Geophys Res Lett 35:L12105, doi: 1029/GL034080

    ADS  Google Scholar 

  • Rymer AM et al. (2007a) Electron sources in Saturn's magnetosphere. J Geophys Res, doi: 10.1029/2006JA012017

    Google Scholar 

  • Rymer AM et al. (2007b) Plasma production and circulation in Saturn's (and Jupiter's?) magnetosphere. American Geophysical Union, Fall Meeting, San Francisco, Dec 2007, Abstract #P52B-04

    Google Scholar 

  • Rymer AM, Mauk BH, Hill TW, Paranicas C, Mitchell DG, Coates AJ, Young DT (2008) Electron circulation in Saturn's magnetosphere. J Geophys Res 113:A01201, doi: 10.1029/2007JA012589

    Google Scholar 

  • Samir U, Wright KH, Stone NH (1983) The expansion of plasma into a vacuum: Basic phenomena and processes and applications to space plasma physics Rev Geophys Space Phys 21:1631–1646

    ADS  Google Scholar 

  • Sanchez ER, Mauk BH, Meng C-I (1993) Adiabatic vs. non-adiabatic particle distributions during convection surges Geophys Res Lett 20(3) 177– 180

    ADS  Google Scholar 

  • Santos-Costa D, Blanc M, Maurice S, Bolton SJ (2003) Modeling the electron and proton radiation belts of Saturn. Geophys Res Lett 30(20):2059, doi: 10.1029/2003GL017972

    ADS  Google Scholar 

  • Saur J, Strobel D (2005) Atmospheres and plasma interactions at Saturn's largest inner icy satellites Astrophys J 620:L115–L118, doi: 10.1086/428665

    ADS  Google Scholar 

  • Saur J, Mauk BH, Kaßner A, Neubauer FM (2004) A model for the az-imuthal plasma velocity in Saturn's magnetosphere J Geophys Res 109:A05217, doi: 10.1029/2003JA010207

    Google Scholar 

  • Saur J, Neubauer FM, Schilling N (2007) Hemisphere coupling in Ence-ladus' asymmetric plasma interaction. J Geophys Res 112(A11), doi: 10.1029/2007JA012479

    Google Scholar 

  • Saur J, Schilling N, Neubauer FM, Strobel DF, Simon S, Dougherty MK, Russell CT, Pappalardo RT (2008) Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophys Res Lett 35(20), CiteID L20105, doi: 10.1029/ 2008GL03581

    Google Scholar 

  • Scarf FL, Gurnett DA, Kurth WS, Poynter RL (1982) Voyager-2 plasma wave observations at Saturn. Science 215:587

    ADS  Google Scholar 

  • Scarf FL, Gurnett DA, Kurth WS, Poynter RL (1983) Voyager plasma wave measurements at Saturn. J Geophys Res 88:8971

    ADS  Google Scholar 

  • Scarf FL, Frank LA, Gurnett DA, Lanzerotti LJ, Lazarus A, Sittler EC Jr (1984) Measurements of plasma, plasma waves and suprather-mal charged particles in Saturn's inner magnetosphere. In: Gehrels T (ed) Saturn, pp 318353. University of Arizona Press, Tucson

    Google Scholar 

  • Schulz M (1998) Particle drift and loss rates under strong pitch angle diffusion in Dungey's model magnetosphere. J Geophys Res 103:61–68

    MathSciNet  ADS  Google Scholar 

  • Schulz M, Lanzerotti LJ (1974) Particle diffusion in the radiation belts. Springer, New York

    Google Scholar 

  • Scurry L, Russell CT (1991) Proxy studies of energy transfer in the magnetosphere. J Geophys Res 96:9541–9548

    ADS  Google Scholar 

  • Scurry L, Russell CT, Gosling JT (1994) Geomagnetic activity and the beta dependence of the dayside reconnection rate. J Geophys Res 99:4,811–14,814

    Google Scholar 

  • Selesnick RS (1993) Micro- and macro- signatures of energetic charged particles in planetary magnetospheres Adv Space Res 13(10):221–230

    ADS  Google Scholar 

  • Sergis N, Krimigis SM, Mitchell DG, Hamilton DC, Krupp N, Mauk BM, Roelof EC, Dougherty M (2007) Ring current at Saturn: Energetic particle pressure in Saturn's equatorial magnetosphere measured with Cassini/MIMI Geophys Res Lett 34:L09102, doi: 10.1029/2006GL029223

    Google Scholar 

  • Sergis N, Krimigis SM, Mitchell DG, Hamilton DC, Krupp N, Mauk BH, Roelof, EC, Dougherty MK (2009) Energetic particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini. J Geophys Res 114:A02214, doi: 10.1029/2008JA013774

    Google Scholar 

  • Shemansky DE (1988) Energy branching in the Io plasma torus: The failure of neutral cloud theory. J Geophys Res 93(A3):1773–1784

    ADS  Google Scholar 

  • Shemansky DE, Sandel BR (1982) The injection of energy into the Io plasma torus, J Geophys Res 87:219–229

    ADS  Google Scholar 

  • Shemansky DE, Hall DT (1992) The distribution of atomic hydrogen in the magnetosphere of Saturn. J Geophys Res 97:(A4) 4143–4161

    ADS  Google Scholar 

  • Shemansky DE, Matheson P, Hall DT, Hu H-Y, Tripp TM (1993) Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363:329–331

    ADS  Google Scholar 

  • Shemansky DE et al. (2004) Cassini UVIS Observatory Phase Spectral, Imaging of the Saturn System COSPAR, Paris

    Google Scholar 

  • Shemansky DE, Liu X, Melin H (2009) The Saturn hydrogen plume. Planet Space Sci, in press, doi: 10.1016/j.pss.2009.05.002

    Google Scholar 

  • Simon S, Saur J, Neubauer FM, Motschmann U, Dougherty MK (2009) Plasma wake of Tethys: Hybrid simulations versus Cassini MAG data. Geophys Res Lett 36(4), CiteID L04108, doi: 10.1029/2008GL036943

    Google Scholar 

  • Siscoe GL, Summers D (1981) Centrifugally driven diffusion of Iogenic plasma. J Geophys Res 86:8471–8479

    ADS  Google Scholar 

  • Siscoe GL, Eviatar A, Thorne RM, Richardson JD, Bagenal F, Sullivan JD (1981) Ring current impoundment of the Io plasma torus. J Geophys Res 86:8480–8484

    ADS  Google Scholar 

  • Sittler EC Jr et al. (2006a) Cassini observations of Saturn's inner plas-masphere: Saturn orbit insertion results. Planet Space Sci 54:1197–1210

    ADS  Google Scholar 

  • Sittler EC Jr, Johnson RE, Smith HT, Richardson JD, Jurac S, Moore M, Cooper JF, Mauk BH, Michael M, Paranicus C, Armstrong TP, Tsurutani B (2006b) Energetic nitrogen ions within the inner magnetosphere of Saturn. J Geophys Res 111:A09223

    Google Scholar 

  • Sittler EC et al. (2008) Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet Space Sci 56:3–18

    ADS  Google Scholar 

  • Sittler, EC Jr, Bertucci C, Coates A, Craven T, Dandouras I, Sheman-sky DE (2009) Energy deposition processes in Titan's upper atmosphere. In: Titan and Cassini/Huygens, in press

    Google Scholar 

  • Smith EJ, Tsurutani BT (1983) Saturn's magnetosphere: Observations of ion cyclotron waves near the Dione L shell. J Geophys Res 88:7831–7836

    ADS  Google Scholar 

  • Smith EJ, Davis L Jr, Jones DE, Colburn DS, Dyal P, Sonnet CP (1974) Magnetic field of Jupiter and its interaction with the solar wind. Science 183:305–306

    ADS  Google Scholar 

  • Smith EJ, Davis L Jr, Jones DE, Coleman PJ Jr, Colburn DS, Dyal P, Sonett CP (1980) Saturn's magnetic field and magnetosphere. Science 207:407–410 (25 January), doi: 10.1126/science.207.4429.407

    ADS  Google Scholar 

  • Smith HT, Johnson RE, Sittler EC, Shappirio M, Tucker OJ, Burger M, Crary FJ, McComas DJ, Young DT (2007) Enceladus: The likely dominant nitrogen source in Saturn's magnetosphere. Icarus 188:356–366

    ADS  Google Scholar 

  • Smith HT, Shappirio M, Johnson RE, Reisenfeld D, Sittler EC, Crary FJ, McComas DJ, Young DT (2008) Enceladus: A source of ammonia products and molecular nitrogen for Saturn's magnetosphere. J Geophys Res 113:A11206, doi: 10.1029/2008JA013352

    ADS  Google Scholar 

  • Smith RA, Bagenal F, Chang AF, Strobel DF (1988) On the energy crisis in the Io plasma torus. Geophys Res Lett 15:545

    ADS  Google Scholar 

  • Sonnerup BUö, Paschmann G et al. (1981) Evidence for magnetic field reconnection at the Earth's magnetopause. J Geophys Res 86:10,049–10,067

    ADS  Google Scholar 

  • Spencer JR, Calvin WM (2002) Condensed O2 on Europa and Callisto. Astronomical J 124(6):3400–3403

    ADS  Google Scholar 

  • Spitzer L (1962) Physics of fully ionized gases, 2nd edn. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  • Strobel DF (2008) Titan's hydrodynamically escaping atmosphere. Icarus 193(2):588–594

    ADS  Google Scholar 

  • Summers D, Omura Y (2008) Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys Res Lett 35, doi: 10.1029/2007GLos226

    Google Scholar 

  • Summers D, Thorne RM, Xiao F (1998) Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res 103:20,487–20,500

    ADS  Google Scholar 

  • Thomsen MF, Van Allen JA (1980) Motion of trapped electrons and protons in Saturn's inner magnetosphere J Geophys Res 85:5831–5834

    ADS  Google Scholar 

  • Thorne RM, Armstrong TP, Stone S, Williams DJ, McEntire RW, Bolton SJ, Gurnett DA, Kivelson MG (1997) Galileo evidence for rapid interchange transport in the Io torus. Geophys Res Lett 24:2131–2134

    ADS  Google Scholar 

  • Tokar RL et al. (2005) Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings. Geophys Res Lett 32:L14S04, doi: 10.1029/2005GL022690

    Google Scholar 

  • Tokar RL et al. (2006) The interaction of the atmosphere of Ence-ladus with Saturn's plasma. Science 311(5766):1409–1412, doi: 10.1126/science.1121061

    ADS  Google Scholar 

  • Tokar RL et al. (2008) Cassini detection of water-group pick-up ions in the Enceladus torus. Geophys Res Lett 35:L14202, doi: 10.1029/ 2008GL034749

    ADS  Google Scholar 

  • Tokar RL, Johnson RE, Thomsen MF, Wilson RJ, Young DT, Crary FJ, Coates AJ, Jones GH, Paty CS (2009) Cassini detection of Ence-ladus's cold water-group plume ionosphere. Geophys Res Lett 36, doi: 10.1029/2009GL038923

    Google Scholar 

  • Tseng W-L, Ip W-H, Johnson RE, Cassidy TA, Elrod Bob MK (2009) The structure and time variability of the ring atmosphere and ionosphere, Icarus, in press doi: 10.1016/j.icarus.2009.05.019

    Google Scholar 

  • Van Allen JA (1976) In: Gehrels T (ed) The high-energy particles of the Jovian magnetosphere, p 928. University of Arizona Press, Tucson

    Google Scholar 

  • Van Allen JA (1984) Energetic particles in the inner magnetosphere of Saturn. In: Gehrels T, Matthews MS (eds) Saturn, p 281. University of Arizona Press, Tucson

    Google Scholar 

  • Van Allen JA, Randall BA, Thomsen MF (1980a) Sources and sinks of energetic electrons and protons in Saturn's magnetosphere. J Geo-phys Res 85:5679–5694

    ADS  Google Scholar 

  • Van Allen JA, Thomsen MF, Randall BA (1980b) The energetic charged particle absorption signature of Mimas J Geophys Res 85:5709–5718

    ADS  Google Scholar 

  • Vasyli ūnas VM (1983) Plasma distribution and flow In: Dessler AJ (ed) Physics of the Jovian magnetosphere, pp 395–453. Cambridge University Press, London

    Google Scholar 

  • Vasyliūnas VM (1994) Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys Res Lett 21:401–404

    Google Scholar 

  • Vasyliūnas VM (2008) Comparing Jupiter and Saturn: Dimensionless input rates from plasma sources within the magnetosphere. An Geo-phys 26:1341–1343, doi: 2008AnGeo.26.1341V

    ADS  Google Scholar 

  • Waite JH Jr et al. (2006) Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311:1419–1422

    ADS  Google Scholar 

  • Walker RJ, Russell CT (1985) Flux transfer events at the Jovian mag-netopause. J Geophys Res 90:7397–7404

    ADS  Google Scholar 

  • Walt M (1994) Diffusion in L coordinate or radial diffusion In: Dessler AJ, Houghton JT Rycroft MJ (eds) Introduction to geomagnetically trapped radiation, 1st edn. pp 132–146 Cambridge University Press, Cambridge, Great Britain

    Google Scholar 

  • Wang YL, Russell CT, Raeder J (2001) The Io mass-loading disk: Model calculations. J Geophys Res 106:26,243–26,260

    ADS  Google Scholar 

  • Wang Z, Gurnett DA, Kurth WS, Ye S, Fischer G, Mitchell DG, Russell CT, Leisner JS (2009) Narrowband radio emissions and their relationship to rotating plasma clouds and magnetic disturbances at Saturn. J Geophys Res, submitted

    Google Scholar 

  • Warwick JW et al. (1981) Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212:239

    ADS  Google Scholar 

  • Warwick JW et al. (1982) Planetary radio astronomy observations from Voyager 2 near Saturn. Science 215:582

    ADS  Google Scholar 

  • Whang YC (1969) Field and plasma in the lunar wake. Phys Rev, Second Ser 186:143–150

    ADS  Google Scholar 

  • Whang YC, Ness NF (1970) Observations and interpretation of the Lunar Mach Cone J Geophys Res 75:6002–6009

    ADS  Google Scholar 

  • Wilson, RJ, Tokar RL, Henderson MG, Hill TW, Thomsen MF, Pontius DH J (2008) Cassini plasma spectrometer thermal ion measurements in Saturn's inner magnetosphere. J Geophys Res. 113: A12218, doi: 10.1029/2008JA013486

    ADS  Google Scholar 

  • Wolf RA (1983) The quasi-static (slow-flow) region of the magnetosphere. In: Carovillano RL, Forbes JM (eds) Solar-terrestrial physics, pp 303– 368. Reidel, Norwood, MA

    Google Scholar 

  • Wu H, Hill TW, Wolf RA, Spiro RW (2007a) Numerical simulation of fine structure in the Io plasma torus produced by the centrifugal interchange instability. J Geophys Res 112(A2), doi: 10.1029/2006JA012032

    Google Scholar 

  • Wu H, Hill TW, Wolf RA, Spiro RW (2007b) Numerical simulation of Coriolis effects on the interchange instability in Saturn's magnetosphere. Eos Trans. AGU 88, Fall Meet. Suppl., Abstract P43A–1006

    Google Scholar 

  • Xin L, Gurnett DA, Santolik O, Kurth WS, Hospodarsky GB (2006) Whistler-mode auroral hiss emissions observed near Saturn's B ring. J Geophys Res 111:A06214, doi: 10.1029/2005JA011432

    Google Scholar 

  • Ye S, Gurnett DA, Fischer G, Cecconi B, Menietti JD, Kurth WS, Wang Z, Hospodarsky GB, Zarka P, Lecacheux A (2009) Source location of narrowband radio emissions detected at Saturn. J Geophys Res 114:A06219, doi: 10.1029/2008JA013855

    Google Scholar 

  • Yelle RV, Cui J, Müller-Wodarg ICF (2008) Methane escape from Titan's atmosphere. J Geophys Res 113:E10003, doi: 10.1029/2007JE003031

    ADS  Google Scholar 

  • Young DT et al. (2005) Composition and dynamics of plasma in Saturn's magnetosphere. Science 307:1262–1266

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Mauk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mauk, B.H. et al. (2009). Fundamental Plasma Processes in Saturn's Magnetosphere. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_11

Download citation

Publish with us

Policies and ethics