Skip to main content

Anti-icing and De-icing Techniques for Overhead Lines

  • Chapter
Atmospheric Icing of Power Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolphe WD (1992) Ice melting of sub-transmission lines. Manitoba Hydro, CEA paper, Toronto: 1–27

    Google Scholar 

  • Allaire M, Laforte JL (2003) Method and apparatus for breaking ice accretions on an aerial wire. U.S Patent 6518497

    Google Scholar 

  • Bar-Cohen Y (2001) Electroactive Polymers as Artificial Muscles – Reality and Challenges. Proceedings of the 42nd AIAA (SDM), Seattle, paper 2001–1492: 1–10

    Google Scholar 

  • Berry WB, Sachs JL, Kleinman RL (1993) Radio Frequency (RF) Third Rail De-icing – A Comparison with Heated Rail. IEEE/ASME Joint Railroad Conference: 41–45

    Google Scholar 

  • Blackburn C, Laforte JL Gagnon D, St-Louis M (2002) Comparative Study of the Quantity of Rime and Glaze Accreted on Free-Rotating and Fixed Overhead Ground Cables: Effect of Anti-Torsion Device. In: Proc 10th International Workshop on Atmospheric Icing of Structures, paper 9–2: 1–6

    Google Scholar 

  • Bourdages M (2000) Ground Wire De-Icing by Joule Effect. In: Proc International OPGW Symposium, Montréal

    Google Scholar 

  • Broussoux D, Ceccaldi MC, Leclerc P (1992) Device for the removal of the ice formed on the surface of a wall, notably an optical or radio-electrical window. US Patent 5172024

    Google Scholar 

  • Byrd NR (2004) Polysiloxane (amide-ureide) anti-ice coating in Patent. Patent, Editor, The Boeing Company, Chicago

    Google Scholar 

  • CEA (2002) De-Icing Techniques Before, During, and Following Ice Storms

    Google Scholar 

  • Cloutier, R, Bergeron A, Brochu J (2007) On-Load Network De-Icer Specification for a Large Transmission Network. IEEE Trans on Power Delivery 22(3): 1947–1955

    Article  Google Scholar 

  • Colbeck SC (1996) Capillarity bonding of wet surfaces. Surface and Coating Technology 81: 209–214

    Article  Google Scholar 

  • Couture P (2004) Switching Modules for the Extraction/Injection of Power (Without Ground or Phase Reference) From a Bundled HV Line. IEEE Trans. on Power Delivery 19(3): 1259–1266

    Google Scholar 

  • Croutch VK, Hartley RA, (1992) Adhesion of ice to coatings and the performance of ice release coatings. Journal of Coatings Technology 64: 41–53

    Google Scholar 

  • Déry A, Gingras JP (2005) Hydro-Québec–TransÉnergie’s Lévis Substation De-Icing Project. Proc. of 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Druez J, Louchez S, McComber P (1994) Ice shedding from wires. Cold Regions Science and Technology 23: 377–388

    Article  Google Scholar 

  • Egbert RI, Scharag RL, Bernhart WD, Zumwalt GW, Kendrew TJ (1989) An Investigation of Power Line De-Icing by Electro-Impulse Methods. IEEE Trans P&D 4(3): 1855–1861

    Google Scholar 

  • Ekstorm IR (1959) More angles of phase shift added to previously known ice-melting methods, AIEE Paper 58–1156: 1449–1452

    Google Scholar 

  • Farzaneh M, Melo OT (1990) Properties and effect of freezing rain and winter fog on outline insulators. Cold Regions Science and Technology 19: 33–46

    Article  Google Scholar 

  • Feng L (2002) Super-Hydrophobic Surface: From Natural to Artificial. Adv. Mater. 14(24): 1857–1860

    Article  Google Scholar 

  • Frankenstein S, Tuthill, AM (2002) Ice adhesion to locks and dams: Past work; future directions. Journal of Cold Regions Engineering 16(2): 83–96

    Article  Google Scholar 

  • Gastonguay L, Champagne GY (1996) Problems Related to Ice Formation on the Guywires of Hydro-Québec Telecommunications Towers: A Critical Review of Literature. In: Proc 7th International Workshop on Atmospheric Icing of Structures, Chicoutimi: 1–6

    Google Scholar 

  • Gingras JP, Breault S, Brodeur R, Crevier C, Déry A, Vallée A (2000) Stratégie de renforcement du réseau d’Hydro-Québec à la suite du verglas exceptionnel de janvier 1998: une démarche pour sécuriser davantage l’alimentation électrique, CIGRÉ Session, Paris, Paper 37–101

    Google Scholar 

  • Granger M, Dutil A, Nantel A, Laurin S (2005) Performance Aspects of Lévis Substation DC De-Icing Project. Proc. of 11th International Workshop on Atmospheric Icing of Structures, Montréal, Canada: 1–6

    Google Scholar 

  • Hacker D, White B, Ferrill R (2000) Ice release coatings for helicopter rotor blades. 78th Annual Meeting of the International Coatings Exposition 2000, Chicago

    Google Scholar 

  • Hardy C, Van Dyke p (1995) Field observations on wind-induced conductor motion. J of Fluids and Structures 9: 43–60

    Article  Google Scholar 

  • Hesse KH (1988) The management of devasting ice storms. In: Proc 3rd International Workshops of Atmospheric Icing of Structure, Paris: 330–334

    Google Scholar 

  • IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors, IEEE Std 738–1993

    Google Scholar 

  • IEEE Working Group on lightning performances of transmission line (1985) A simplified method for estimated lightning performance of transmission line. IEEE Trans PAS 104: 919–927

    Google Scholar 

  • Jakl F, Jakl A (2000) Effect on Elevated Temperatures on Mechanical Properties of Overhead Conductors Under Steady State and Short-Circuit Conditions. IEEE Trans P&D 15(1): 242–246

    Google Scholar 

  • Javan-Mashmool, Volat C, Farzaneh M (2005) A New Method for Measuring Ice Adhesion Strength at an Ice/Substrate Interface. Hydrological Processes 20: 645–655

    Google Scholar 

  • Ji H A, Cĉté D, Koshel B, Terreault G, Abel P, Ducharme G, Ross S, Gagné M (2002) Hydrophobic fluorinated carbon coatings on silicate glaze and aluminum., J Thin Solid Films 405: 104–108

    Article  Google Scholar 

  • Kiuru M (2004) Experimental Studies on Diamond-Like Carbon and Novel Diamond-Like Carbon – Polymer – Hybrid Coatings. Academic Dissertation, Faculty of Science of the University of Helsinki: 1–36

    Google Scholar 

  • Kulinich SA, Farzaneh M (2003) Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers. Surf Sci 573: 379–390

    Article  Google Scholar 

  • Kulinich SA, Farzaneh M (2004) Alkylsilane self-assembled monolayers: Modeling their wetting characteristic. Appl Surf Sci 230: 232–240

    Article  Google Scholar 

  • Laforte C, Beisswenger A (2005) Icephobic Material Centrifuge Adhesion Test. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Laforte JL, Allaire MA, Laflamme JL (1998) State-of-the-Art on Power Line De-Icing. Atmospheric Research 46: 143–158

    Article  Google Scholar 

  • Laforte JL, Allaire MA, Laforte C (2005a) Demonstration of the Feasibility of a New Mechanical Method of Cable De-Icing. Proc. of 11th International Workshop on Atmospheric Icing of Structures, Montréal, Canada, pp 1–6

    Google Scholar 

  • Laforte JL, Allaire MA, Gagnon D (2005b) Ice Shedding of 200m-Long Artificially Iced Overhead Cables at an Outdoor Test Site. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Landry M, Beauchemin R, Venne A (2000) De-icing EHV overhead transmission lines using electromagnetic forces generated by moderate short-circuit currents. 2000 IEEE ESMO Conference, Montreal: 94–100

    Google Scholar 

  • Landry M, Beauchemin R, Venne A (2001) De-icing EHV Overhead Transmission Lines by Short-circuit Currents. IEEE Canadian Review – Spring: 10–14

    Google Scholar 

  • Lanoie R, Bouchard D, Lessard M (2005) Using Steam to De-Ice Energized Substation Disconnect Switch. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Leblond A, Montambault S, St-Louis M, Beauchemin R, Laforte JL, Allaire MA (2002) Development of New Ground Wire De-Icing Methods. In: Proc 10th International Workshop on Atmospheric Icing of Structure, Brno, paper 9.6: 1–6

    Google Scholar 

  • Leblond A, Lamarche B, Bouchard D, Panaroni B, Hamel M (2005) Development of a Portable De-Icing Device for Overhead Ground Wires. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Leroy G, Gary C (1984) Les propriétés diélectriques de l’air et les très hautes tensions. Collection de la direction des Études et Recherches d’Électricité de France, ed Eyrolles

    Google Scholar 

  • McClure G, Lapointe M (2003) Modeling the structural dynamic response of overhead transmission lines. Computers and Structures 81: 825–834

    Article  Google Scholar 

  • McComber P (2001) A non-circular accretion shape freezing rain model for transmission line icing. In: Proc 9th International Workshop on Atmospheric Icing of Structures, Chester: 1–6

    Google Scholar 

  • Montambault S, Côté J, St-Louis M (2000) Preliminary Results on the Development of a Teleoperated Compact Trolley for Live-Line Working. 2000 IEEE ESMO Conference, Montréal: 21–27

    Google Scholar 

  • Motlis Y (2002) Melting Ice on Overhead-Line Conductors by Electrical Current. CIGRE SC22/WG12 document, draft no. 4, revised for the WG12 Meeting, Paris

    Google Scholar 

  • Mulherin ND, Haehnel RB (2003) Progress in Evaluating Surface Coatings for Icing Control at Corps Hydraulic Structures. Ice Engineering, Technical Note 03–4

    Google Scholar 

  • Murase H., Nanishi K, Kogure H, Fujibayashi T, Tamura K, Haruta (1994) Interactions between heterogeneous surfaces of polymers and water. Journal of Applied Polymer Science 54(13): 2051–2062.

    Google Scholar 

  • Nakagami M (2007) Verification on the Effects of PTFE Tapes on Reducing Snow Accretion on Overhead Power Transmission Lines. In: Proc 12th International Workshop on Atmospheric Icing of Structures, Yokohama: 1–6

    Google Scholar 

  • Nourai A, Hayes RM (2003) Power line ice-shedder. U.S Patent 6660934

    Google Scholar 

  • Olive CR (1925) Sleet and ice troubles on transmission lines in New England. AIEE paper, May

    Google Scholar 

  • Pelrine R, Kornbluh R, Joseph J, Heydt R, Pei Q (2000) High-field deformation of elastomeric dielectrics for actuators. Materials Science and Engineering 11: 89–100

    Article  Google Scholar 

  • Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, Oxford

    Google Scholar 

  • Petrenko VF, Sullivan CR (2003) Methods and systems for removing ice from surfaces. U.S. Patent 6653698

    Google Scholar 

  • Petrenko VF, Sullivan CR (2005) Pulse electrothermal deicier for power cable. International Patent 2005083862

    Google Scholar 

  • Petrenko VF, Peng S (2003) Reduction of ice adhesion to metal by using self-assembling monolayers (SAMs). Can J Phys 81: 387–393

    Article  Google Scholar 

  • Petrenko VF (2000) Systems and methods for modifying ice adhesion strength. U.S Patent 6027075

    Google Scholar 

  • Petrovic JJ (2003) Mechanical Properties of ice and snow. J of Materials Science 38: 1–6

    Article  MathSciNet  Google Scholar 

  • Polhman JC, Landers P (1982) Present state-of-the-art of transmission line icing. IEEE Trans. PAS 101(8): 2443–2450

    Google Scholar 

  • Prud’Homme P, Roux MO, Guilbault P, Séguin PA, Hounkpatin E (2005a) Determination of Current Required to De-Ice Transmission Line Conductors. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Prud’Homme P, Dutil A, Laurin S, Lebeau S, Benny J, Cloutier R (2005b) Hydro-Québec TransÉnergie Line Conductor De-Icing Techniques. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–6

    Google Scholar 

  • Reich A (1994) Interface influences upon ice adhesion to airfoil materials. AIAA, 32nd Aerospace Sciences Meeting and Exhibit, Reno, USA, paper 1994–714

    Google Scholar 

  • Roger H (2004) Means and Method for Removing Extraneous Matter Like Ice/Snow an Overhead Line. Patent US2004065458

    Google Scholar 

  • Roger H (2004) Monitoring System and Device for an Electric Power Line Network. Patent US2004038891

    Google Scholar 

  • Shiu J et al. (2004) Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chem of Mat 16(4): 561–564

    Article  MathSciNet  Google Scholar 

  • Somlo B, Gupta V (2001) A hydrophobic self-assembled monolayer with improved adhesion to aluminum for de-icing application. J Mech Mater 33: 471–480

    Article  Google Scholar 

  • Sullivan, CR, Petrenko, VF, McCurdy, JD (2003) Using Dielectric Losses to De-Ice Power Transmission Lines with 100 kHz High-Voltage Excitation. Conf on IEEE Industry Applications Magazine, 9(5): 49–54

    Article  Google Scholar 

  • Techniques de l’ingénieur (1996a) Lignes aériennes: échauffement et efforts électrodynamiques. Traité Génie électrique, section D 4439: 1–9

    Google Scholar 

  • Techniques de l’ingénieur (1996b) Mise en place des câbles. Traité Génie électrique, section D 4429: 11–14

    Google Scholar 

  • Volat C, Farzaneh M, Leblond A (2005) De-icing/Anti-icing Techniques for Power Lines: Current Methods and Future Direction. In: Proc 11th International Workshop on Atmospheric Icing of Structures, Montréal: 1–11

    Google Scholar 

  • Wang ST (2002) Method and apparatus for autonomous de-icing. US Patent 640209

    Google Scholar 

  • Yoshida M, Ohichi T, Konno K, Gocho M (1991) Adhesion of Ice to Various Materials. Cold Regions Technology Conference, Sapporo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Farzaneh, M., Volat, C., Leblond, A. (2008). Anti-icing and De-icing Techniques for Overhead Lines. In: Farzaneh, M. (eds) Atmospheric Icing of Power Networks. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8531-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8531-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8530-7

  • Online ISBN: 978-1-4020-8531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics