Skip to main content

Soil Organic Carbon Dynamics and Land-Use Change

  • Chapter
Land Use and Soil Resources

Soils contain more than twice the amount of carbon found in the atmosphere. Historically, soils have lost 40–90 Pg C globally through cultivation and disturbance. Current rates of carbon loss due to land-use change are about 1.6 ± 0.8 Pg C y−1, mainly in the tropics. The most effective mechanism for soil carbon management would be to halt land-use conversion, but with a growing population in the developing world, and changing diets, more land is likely to be required for agriculture.

Maximizing the productivity of existing agricultural land and applying best management practices to that land would slow the loss of, or is some cases restore, soil carbon. However, there are many barriers to implementing best management practices, the most significant of which in developing countries are driven by poverty and in some areas exacerbated by a growing population. Management practices that also improve food security and profitability are most likely to be adopted. Soil carbon management needs to be considered within a broader framework of sustainable development. Policies to encourage fair trade, reduced subsidies for agriculture in developed countries, and less onerous interest on loans and foreign debt would encourage sustainable development, which in turn would encourage the adoption of successful soil carbon management in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, J. C. (1985). Soil response to forest clearing in the United States and tropics: Geological and biological factors. Biotropica, 17, 15–27.

    Article  Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Cannell, M. G. R. (2003). Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy, 24, 97–116.

    Article  Google Scholar 

  • Cole, V., Cerri, C., Minami, K., Mosier. A., et al. (1996). Agricultural options for mitigation of greenhouse gas emissions. In: R. T. Watson, M. C Zinyowera, R. H Moss & D. J. Dokken (Eds.), Climate change 1995. Impacts, adaptations and mitigation of climate change: Scientific-technical analyses (pp. 745–771). New York: Cambridge University Press.

    Google Scholar 

  • Conway, G., & Toenniessen, G. (1999). Feeding the world in the twenty-first century. Nature, 402, C55–C58.

    Article  CAS  Google Scholar 

  • Detwiller, R. P., & Hall, A. S. (1988). Tropical forests and the global carbon cycle. Science, 239, 42–47.

    Article  Google Scholar 

  • Fearnside, P. M. (1997). Greenhouse gases from deforestation in Brazilian Amazonia: Net committed emissions. Climatic Change, 35, 321–360.

    Article  CAS  Google Scholar 

  • Freibauer, A., Rounsevell, M., Smith, P., & Verhagen, A. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1–23.

    Article  CAS  Google Scholar 

  • Follett, R. F., Kimble, J. M., & Lal, R. (2000). The potential of U.S. grazing lands to sequester soil carbon. In: R. F. Follett, J. M. Kimble & R. Lal (Eds.), The potential of U.S. Grazing lands to sequester carbon and mitigate the greenhouse effect (pp. 401–430). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land-use change: A meta analysis. Global Change Biology, 8, 345–360.

    Article  Google Scholar 

  • IPCC. (1997). IPCC (Revised 1996) Guidelines for national greenhouse gas inventories: Workbook. Paris: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • IPCC. (2000a). Special report on land use, land-use change, and forestry. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2000b). Special report on emissions scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2001). Climate change: The scientific basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jenkinson, D.S. (1988). Soil organic matter and its dynamics. In A. Wild (Ed.), Russell's soil conditions and plant growth (11th ed., pp. 564–607). London: Longman.

    Google Scholar 

  • Houghton, R. A. (1999). The annual net flux of carbon to the atmosphere from changes in land use: 1850 to 1990. Tellus, 50B, 298–313.

    Google Scholar 

  • Houghton, R. A., Hackler, J. L., & Lawrence, K. T. (1999). The US carbon budget: Contributions from land-use change. Science, 285, 574–578.

    Article  CAS  Google Scholar 

  • Lal, R. (1999). Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Progress in Environmental Science, 1, 307–326.

    CAS  Google Scholar 

  • Lal, R. (2001). Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climate Change, 15, 35–72.

    Article  Google Scholar 

  • Lal, R. (2004a). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.

    Article  CAS  Google Scholar 

  • Lal, R., (2004b): Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

    Article  CAS  Google Scholar 

  • Lal, R., Kimble, J. M., Follet, R. F., & Cole, C. V. (1998). The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Chelsea, MI: Ann Arbor Press.

    Google Scholar 

  • Lohila, A., Aurela, M., Tuovinen, J. P., & Laurila, T. (2004). Annual CO2 exchange of a peat field growing spring barley or perennial forage grass. Journal of Geophysical Research, 109, D18116, doi:10.1029/2004JD004715.

    Article  Google Scholar 

  • Maljanen, M., Martikainen, P. J., Walden, J., & Silvola, J. (2001). CO2 exchange in an organic field growing barley or grass in eastern Finland. Global Change Biology, 7, 679–692.

    Article  Google Scholar 

  • Maljanen, M., Komulainen, V. M., Hytonen, J., Martikainen, P., & Laine, J. (2004). Carbon dioxide, nitrous oxide and methane dynamics in boreal organic agricultural soils with different soil characteristics. Soil Biology and Biochemistry, 36, 1801–1808.

    Article  CAS  Google Scholar 

  • Maltby, E., & Immirzi, C. P. (1993). Carbon dynamics in peatlands and other wetlands soils: Regional and global perspective. Chemosphere, 27, 999–1023.

    Article  CAS  Google Scholar 

  • Mann, L. K. (1986). Changes in soil carbon storage after cultivation. Soil Science, 142, 279–288.

    Article  CAS  Google Scholar 

  • Metting, F. B., Smith, J. L., & Amthor, J. S. (1999). Science needs and new technology for soil carbon sequestration. In N.J. Rosenberg, R.C. Izaurralde & Malone, E.L. (Eds.), Carbon sequestration in soils: Science, monitoring and beyond (pp. 1–34). Columbus, OH: Battelle Press.

    Google Scholar 

  • Moraes, J. F. L. de, Volkoff, B., Cerri, C. C., & Bernoux, M. (1995). Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma, 70, 63–86.

    Google Scholar 

  • Nabuurs, G. J., Daamen, W. P., Dolman. A. J., Oenema, O., Verkaik, E., Kabat, P., Whitmore, A. P., & Mohren, G. M. J. (1999). Resolving issues on terrestrial biospheric sinks in the Kyoto Protocol. Dutch National Programme on Global Air Pollution and Climate Change, Report 410 200 030 (1999).

    Google Scholar 

  • Neill, C., Melillo, J. M., Steudler, P. A., Cerri, C. C., Moraes, J. F. L. de, Piccolo, M. C., & Brito, M. (1997). Soil carbon and nitrogen stocks following forest clearing for pasture in the Southwestern Brazilian Amazon. Ecological Applications, 7, 1216–1225.

    Article  Google Scholar 

  • Nykänen, H., Alm, J., Lang, K., Silvola, J., & Martikainen, P. J. (1995). Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography, 22, 351–357.

    Article  Google Scholar 

  • Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., Tiessen, H., van Noordwijk, M., & Woomer, P. L. (1997). Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management, 13, 229–244.

    Article  Google Scholar 

  • Richards, K. S., Sampson, R. N., & Brown, S. (2006). Agriculture & Forestlands: U.S. Carbon Policy Strategies. Arlington, TX: Pew Center on Global Climate Change. Available at www.pewclimate.org.

  • Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 1922–1925.

    Article  CAS  Google Scholar 

  • Schimel, D. S. (1995). Terrestrial ecosystems and the carbon-cycle. Global Change Biology, 1, 77–91.

    Article  Google Scholar 

  • Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., et al. Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L., & Wirth, C. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169–172.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H. (1999). Carbon sequestration in soils. Science, 284, 2095.

    Article  CAS  Google Scholar 

  • Smith, J. U., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R. J. A., et al. (2005a). Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Global Change Biology, 11, 2141–2152.

    Article  Google Scholar 

  • Smith, P. (2004). Soils as carbon sinks: The global context. Soil Use and Management, 20, 212–218.

    Article  Google Scholar 

  • Smith, P., & Powlson, D. S. (2003). Sustainability of soil management practices: A global perspective. In L. K. Abbott & D.V Murphy (Eds.), Soil biological fertility: A key to sustainable land use in agriculture (pp. 241–254). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Smith, P., Powlson, D. S., & Glendining, M. J. (1996). Establishing a European soil organic matter network (SOMNET). In: D.S. Powlson, P. Smith & J.U Smith (Eds.), Evaluation of soil organic matter models using existing, long-term datasets, NATO ASI Series I, Vol. 38 (pp. 81–98). Berlin: Springer-Verlag.

    Google Scholar 

  • Smith, P., Powlson, D. S., Glendining, M. J., & Smith, J. U. (1997). Potential for carbon sequestration in European soils: Preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3, 67–79.

    Article  Google Scholar 

  • Smith, P., Falloon, P., Coleman, K., Smith, J. U., Piccolo, M., Cerri, C. C., Bernoux, M, Jenkinson, D. S., Ingram, J. S. I., Szabó, J., & Pásztor, L. (1999). Modelling soil carbon dynamics in tropical ecosystems. In R. Lal, J. M. Kimble, R. F. Follett & B. A. Stewart (Eds.), Global climate change and tropical soils: Advances in soil science, CRC press, Boca Raton, Florida, USA. (pp. 341–364).

    Google Scholar 

  • Smith, P., Powlson, D. S., Smith, J. U., Falloon, P. D., & Coleman, K. (2000). Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 6, 525–539.

    Article  Google Scholar 

  • Smith, P., Falloon, P., Smith, J. U., & Powlson, D. S. (Eds.). (2001a). Soil Organic Matter Network (SOMNET): 2001 model and experimental metadata, GCTE Report 7 (2nd ed.), GCTE Focus 3 Office. Wallingford, Oxon (224pp.).

    Google Scholar 

  • Smith, P., Goulding, K. W., Smith, K. A., Powlson, D. S., Smith, J. U., Falloon, P., & Coleman, K. (2001b). Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential. Nutrient Cycling in Agroecosystems, 60, 237–252.

    Article  Google Scholar 

  • Smith, P., Falloon, P. D., Körschens, M., Shevtsova, L. K., Franko, U., Romanenkov, V., Coleman, K, Rodionova, V, Smith, J. U., & Schramm, G. (2002). EuroSOMNET—A European database of long-term experiments on soil organic matter: The www metadatabase. Journal of Agricultural Science (Cambridge), 138, 123–134.

    Google Scholar 

  • Smith, P., Andrén, O., Karlsson, T., Perälä, P., Regina, K., Rounsevell, M., & Van Wesemael, B. (2005b). Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 11, 2153–2163.

    Article  Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H. H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, R. J., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J.U. (2007a) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B, 363. doi: 10.1098/rstb.2007.2184.

    Google Scholar 

  • Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H. H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, R. J., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., & Towprayoon, S. (2007b) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118, 6–28.

    Article  Google Scholar 

  • Trines, E., Höhne, N., Jung, M., Skutsch, M., Petsonk, A., Silva-Chavez, G., Smith, P., Nabuurs, G.J., Verweij, P., & Schlamadinger, B. (2006). Integrating agriculture, forestry, and other land use in future climate regimes: Methodological issues and policy options. A Report for the Netherlands Research Programme on Climate Change (NRP-CC) (188pp).

    Google Scholar 

  • Veldkamp, E. (1994). Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Science Society of America Journal, 58, 175–180.

    Article  Google Scholar 

  • Vlek, P. L. G., Rodríguez-Kuhl, G., & Sommer, R. (2004). Energy use and CO2 production in tropical agriculture and means and strategies for reduction or mitigation. Environment, Development & Sustainability, 6, 213–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Smith, P. (2008). Soil Organic Carbon Dynamics and Land-Use Change. In: Braimoh, A.K., Vlek, P.L.G. (eds) Land Use and Soil Resources. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6778-5_2

Download citation

Publish with us

Policies and ethics