Skip to main content

Artificial Neural Networks In Water Resources

  • Conference paper
Integration of Information for Environmental Security

Forecasts of future events are required in many of the activities associated with the planning and operation of the components of a water resource system. For the hydrologic component, there is a need for both short and long-term forecasts of hydrologic time series in order to optimize the system or to plan for future expansion or reduction. This paper presents the comparison of different artificial neural network (ANN) techniques in short-term continuous and intermittent daily streamflow forecasting and daily suspended sediment forecasting. Three different ANN techniques, namely, feed forward back propagation (FFBP), generalized regression neural networks (GRNN) and radial basis function-based neural networks (RBF) are applied to the hydrologic data. In general, the forecasting performance of ANN techniques is found to be superior to the other conventional statistical and stochastic methods in terms of the selected performance criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. E. Nash and J. V. Sutcliffe, River flow forecasting through conceptual models: Part I —A Discussion of principles, Journal of Hydrology, 10, 282–290 (1970).

    Article  Google Scholar 

  2. R. Srikanthan and T. A. McMahon, Stochastic time series modelling of arid zone streamflows, Hydrological Sciences Bulletin, 25, 423–434 (1980a).

    Google Scholar 

  3. R. Srikanthan and T. A. McMahon, Stochastic generation of monthly flows for ephemeral streams, Journal of Hydrology, 47, 19–40 (1980b).

    Article  Google Scholar 

  4. I. Rodriguez-Iturbe, P. R. Cox, V. Isham, Some models for rainfall based on stochastic processes, Proceedings of the Royal Society of London, A 410, 269–288 (1987).

    Google Scholar 

  5. C. Onof and H. S. Wheater, Modelling of rainfall time-series using the Bartlett-Lewis model,Proceedings of the Institution of Civil Engineers-Water Maritime and Energy, 112(4),362–374 (1995).

    Article  Google Scholar 

  6. P. S. P. Cowpertwait, A generalized spatial-temporal model of rainfall based on a Clustered point process, Proceedings of the Royal Society of London, A 450, 163–175 (1995).

    Google Scholar 

  7. P. S. P. Cowpertwait, A Poisson-cluster model of rainfall: high order moments and extreme values, Proceedings of Royal Society of London, A 454, 885–898 (1998).

    Google Scholar 

  8. H. K. Cigizoglu, A. Metcalfe, and P. T. Adamson, Bivariate stochastic modeling of ephemeral streamflow, Hydrologic Processes, 16(7), 1451–1465 (2002).

    Article  Google Scholar 

  9. H. K. Cigizoglu, Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation, Journal of Hydrologic Engineering, ASCE, 10(4), 336–341 (2005).

    Article  Google Scholar 

  10. G. L. Morris and J. Fan, Reservoir sedimentation handbook (McGraw-Hill, New York, 1997).

    Google Scholar 

  11. V. P. Singh, P. F. Krstanovic, and L. J. Lane, Stochastic Models of Sediment Yield,Modeling Geomorphological Systems, Chapter 9, edited by M. G. Anderson (Wiley, New York, 1988).

    Google Scholar 

  12. H. R. Maier and G. C. Dandy, The use of neural networks for the prediction of water quality parameters, Water Resources Research, 32(4), 1013–1022 (1996).

    Article  Google Scholar 

  13. K. Hsu, H. V. Gupta, and S. Sorooshian, Artificial neural network modeling of the rainfall-runoff process, Water Resources Research, 31, 2517–2530 (1995).

    Article  Google Scholar 

  14. A. Y. Shamseldin, Application of a neural network technique to rainfall-runoff modeling,Journal of Hydrology, 199, 272–294 (1997).

    Article  Google Scholar 

  15. N. Sajikumar and B. S. Thandaveswara, A non-linear rainfall-runoff model using an artificial neural network, Journal of Hydrology, 216, 32–55 (1999).

    Article  Google Scholar 

  16. A. S. Tokar and P. A. Johnson, Rainfall-runoff modeling using artificial neural networks,Journal of Hydrologic Engineering, 4(3), 232–239 (1999).

    Article  Google Scholar 

  17. H. K Cigizoglu and M. Alp, Rainfall-Runoff Modelling Using Three Neural Network Methods. Artificial Intelligence and Soft Computing — ICAISC 2004, Lecture Notes in Artificial Intelligience, 3070, 166–171 (2004).

    Google Scholar 

  18. F. Anctil, C. Perrin, and V. Andreassian, Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models,Environ. Modell. Software. 19, 357–368 (2004).

    Google Scholar 

  19. K. Thirumalaiah, and M. C. Deo, River stage forecasting using artificial neural networks,Journal of Hydrologic Engineering, 3(1), 26–32 (1998).

    Article  Google Scholar 

  20. C. M. Zealand, D. H. Burn, and S. P. Simonovic, Short term streamflow forecasting using artificial neural networks, Journal of Hydrology, 214, 32–48 (1999).

    Article  Google Scholar 

  21. M. Campolo, P. Andreussi, and A. Soldati, River flood forecasting with a neural network Model, Water Resources Research, 35(4), 1191–1197 (1999).

    Article  Google Scholar 

  22. J. D. Salas, M. Markus, and A. S. Tokar, Streamflow forecasting based on artificial neural networks, in: Artificial Neural Networks in Hydrology, edited by R. S. Govindaraju and A. R. Rao (Kluwer Academic Publishers, London, 2000).

    Google Scholar 

  23. T. J. Chang, J. W. Delleur, and M. L. Kavvas, Application of discrete autoregressive moving average models for estimation of daily runoff, Journal of Hydrology, 91, 119–135 (1987).

    Article  Google Scholar 

  24. B. Sivakumar, A. W. Jayawardena, and T. M. K. G. Fernando, River flow forecasting: use of phase space reconstruction and artificial neural networks approaches, Journal of Hydrology,265, 225–245 (2002).

    Article  Google Scholar 

  25. H. K. Cigizoglu, Estimation, forecasting and extrapolation of flow data by artificial neural networks, Hydrological Sciences Journal, 48(3), 349–361 (2003a).

    Article  Google Scholar 

  26. H. K. Cigizoglu, Incorporation of ARMA models into flow forecasting by artificial neural networks, Environmetrics, 14(4), 417–427 (2003b).

    Article  Google Scholar 

  27. H. K Cigizoglu, Application of the Generalized Regression Neural Networks to Intermittent Flow Forecasting and Estimation, ASCE Journal of Hydrologic Engineering, 10(4), 336–341 (2005).

    Article  Google Scholar 

  28. O. Kisi, River flow modeling using artificial neural networks, ASCE Journal of Hydrologic Engineering, 9(1), 60–63 (2004).

    Article  Google Scholar 

  29. P. Coulibaly, F. Anctil, and B. Bobeé, Real time neural network based forecasting system for hydropower reservoirs. in: Proceedings of the First International Conference on New Information Technologies for Decision Making in Civil Engineering, edited by E. T. Miresco, University of Quebec, Montreal, Canada (10–13 October 1998), pp. 1001–1011.

    Google Scholar 

  30. S. K. Jain, D. Das, and D. K. Srivastava, Application of ANN for reservoir inflow prediction and operation, Journal of Water Resources Planning Managment ASCE 125(5), 263–271 (1999).

    Article  Google Scholar 

  31. S. K. Jain, Development of integrated sediment rating curves using ANNs, Journal of Hydraulic Engineering, ASCE, 127(1), 30–37 (2001).

    Article  Google Scholar 

  32. H. K. Cigizoglu, Estimation and forecasting of daily suspended sediment data by multi layer perceptrons, Advances in Water Resources, 27, 185–195 (2004).

    Article  Google Scholar 

  33. M. Alp, and H. K. Cigizoglu, Suspended sediment estimation by feed forward back propagation method using hydro meteorological data, Environmental Modelling and Software, 22(1), 2–13 (2007).

    Article  Google Scholar 

  34. R. J. Abrahart and S. M White, Modeling Sediment Transfer in Malawi: Comparing Backpropagation Neural Network Solutions against a multiple linear regression benchmark using small data sets, Physics and Chemistry of the Earth, B 26(1), 19–24 (2001).

    Google Scholar 

  35. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representation by error propagation. in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, edited by D. E. Rumelhart and J. L. McClelland (MIT Press, Cambridge, MA, 1986), 1, 318–362.

    Google Scholar 

  36. S. Brikundavyi, R. Labib, H. T. Trung, and J. Rousselle, Performance of neural networks in daily streamflow forecasting, Journal of Hydrologic Engineering, ASCE, 7(5), 392–398 (2002).

    Article  Google Scholar 

  37. M. Freiwan and H. K. Cigizoglu, Prediction of total monthly rainfall in Jordan using feed forward backpropagation method, Fresenius Environmental Bulletin, 14(2), 142–151 (2005).

    Google Scholar 

  38. H. K. Cigizoglu and O. Kisi, Methods to improve the neural network performance in suspended sediment estimation, Journal of Hydrology, 317(3–4), 221–238 (2006).

    Google Scholar 

  39. A. Jain and S. K. V. P. Indurthy, Comparative analysis of event-based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, Journal of Hydrologic Engineering, ASCE, 8(2), 93–98 (2003).

    Article  Google Scholar 

  40. O. Kisi, River flow modeling using artificial neural networks, ASCE Journal of Hydrologic Engineering, 9(1), 60–63 (2004).

    Article  Google Scholar 

  41. H. K. Cigizoglu and O. Kisi, Flow Prediction by three Back Propagation Techniques Using k-fold Partitioning of Neural Network Training Data, Nordic Hydrology, 36(1), 1–16 (2005).

    Google Scholar 

  42. D. A. K. Fernando and A. W. Jayawardena, Runoff forecasting using RBF networks with OLS algorithm, Journal of HydrologicEngineering, 3(3), 203–209 (1998).

    Google Scholar 

  43. K. P. Sudheer and S. K. Jain, Radial basis function neural network for modeling rating curves, Journal of Hydrologic Engineering, ASCE, 8(3), 161–164 (2003).

    Article  Google Scholar 

  44. S. Haykin, Neural networks (Macmillan College Publishing, New York, 1994).

    Google Scholar 

  45. M. T. Hagan and M. B. Menhaj, Training feed forward techniques with the Marquardt algorithm, IEEE Transactions on NeuralNetworks, 5(6), 989–993 (1994).

    Article  Google Scholar 

  46. M. Y. El-Bakyr, Feed forward neural networks modeling for K-P interactions, Chaos,Solutions and Fractals, 18(3), 995–1000 (2003).

    Article  Google Scholar 

  47. M. S. Iyer and R. R. Rhinehart, A method to determine the required number of neural network training repetitions, IEEE Transactions on Neural Networks, 10(2), 427–432 (1999).

    Article  Google Scholar 

  48. D. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks,Complex Systems, 2, 321–355 (1988).

    Google Scholar 

  49. T. Poggio and F. Girosi, Regularization algorithms for learning that are equivalent tomultilayer networks, Science, 2247, 978–982 (1990).

    Article  Google Scholar 

  50. A. M. Taurino, C Distante, P. Siciliano, and L. Vasanelli, Quantitative and qualitativeanalysis of VOCs mixtures by means of a microsensors array and different evaluation methods, Sensors and Actuators, 93, 117–125 (2003).

    Article  Google Scholar 

  51. D. F. Specht, A general regression neural network, IEEE Transactions on Neural Networks, 2(6),568–576 (1991).

    Article  Google Scholar 

  52. L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approached in Engineering (Wiley,NewYork, 1997).

    Google Scholar 

  53. B. Kim, S. Kim, and K. Kim, Modelling of plasma etching using a generalized regression neural network, Vacuum, 71, 497–503 (2003).

    Article  Google Scholar 

  54. K. P. Sudheer, A. K. Gosain, and K. S. Ramasastri, A data-driven algorithm for constructing artificial neural network rainfall-runoff models, Hydrological Processes, 16, 1325–1330 (2002).

    Article  Google Scholar 

  55. B. Zhang and R. S. Govindaraju, Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resources Research, 36(3), 753–763 (2000a).

    Article  Google Scholar 

  56. B. Zhang, and R. S. Govindaraju, Modular neural networks for watershed runoff, in:Artificial Neural Networks in Hydrology, edited by R. S. Govindaraju and A. R. Rao (Kluwer Academic Publishers, Amsterdam, 2000b).

    Google Scholar 

  57. T. S. Hu, K. C. Lam, and S. T. NG, River flow time series prediction with a range-dependent neural network, Hydrological Sciences Journal, 46(5), 729–745 (2001).

    Article  Google Scholar 

  58. L. See and S. Openshaw, Applying soft computing approaches to river level forecasting,Hydrological Sciences Journal, 44(5), 763–778 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Cigizoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Cigizoglu, H.K. (2008). Artificial Neural Networks In Water Resources. In: Coskun, H.G., Cigizoglu, H.K., Maktav, M.D. (eds) Integration of Information for Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6575-0_8

Download citation

Publish with us

Policies and ethics