Skip to main content

Fractional Multimodels of the Gastrocnemius Muscle for Tetanus Pattern

  • Chapter
Advances in Fractional Calculus

This study talks about gastrocnemius muscle identification. During biological activation, every contractile structure is unsynchronized. Likewise, contraction and relaxation phases depend on all contractile elements, the activation type and the state of health. Moreover, gastrocnemius muscle is composed of three fibre types: fast (IIB), resistant (IIA), and slow (I) fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arsos GA, Dimitriu PP (2004) A fractal characterization of the type II fibre distribution in the extensor digitorum longus and soleus muscles of the adult rat, Muscle and Nerve, 18:961-968.

    Article  Google Scholar 

  2. Cross SS (1997) Fractals in pathology, J. Pathol. 182:1-8.

    Article  Google Scholar 

  3. Delvolvé I, Bem T, Cabelguen J-M (1997) Epaxial and limb muscle activy during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl, J. Neurophysiol., 78:638-650.

    Google Scholar 

  4. Delvolvé I, Branchereau P, Dubuc R, Cabelguen J-M (1999) Fictive patterns of rhythmic motor activity induced by NMDA in an in vitro brainstem-spinal cord preparation from an adult urodele amphibian, J. Neurophysiol., 82:1074-1078.

    Google Scholar 

  5. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, Stanley HE (February 2002) Fractal dynamics in physiology: alterations with disease and aging, PNAS, 99(Suppl. 1):2466-2472.

    Article  Google Scholar 

  6. Grünwald AK (1867) Ueber begrenzte Derivationen und deren Anwendung, Z. Angew. Math. Phys., 12:441-480.

    Google Scholar 

  7. Liouville J (1832) Mémoire sur le calcul des différentielles à indices quelconques, Ecole Polytechnique, 13(21):71-162.

    Google Scholar 

  8. Lowen SB, Cash SS, Poo M-M, Teich MC (August 1997) Quantal neurotransmitter secretion rate exhibits fractal behavior, J. Neurosci., 17 (15):5666-5677.

    Google Scholar 

  9. Malti R, Aoun M, Battaglia J-L, Oustaloup A, Madami K (August 1989) Fractional multimodels - Application to heat transfert modelling, 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands.

    Google Scholar 

  10. Miller KS, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential Equation. Wiley, New York.

    Google Scholar 

  11. Oustaloup A (1995) La Derivation Non Entière, Hermes, Paris.

    MATH  Google Scholar 

  12. Ravier P, Buttelli O, Couratier P (2005) An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions, J. Electromyogr. Kinesiol., 15 (2):210-221.

    Article  Google Scholar 

  13. Rossignol S (1996) Neural control of stereotypic limb movements, International Handbook of Physiology (Rowell LB, Sheperd JT ed.). American Physiological Society, pp. 173-216.

    Google Scholar 

  14. Samko AG, Kilbas AA, Marichev OI (1987) Fractional Integrals and Derivatives. Gordon and Breach Science, Minsk.

    MATH  Google Scholar 

  15. Shepherd GM (1994) Neurobiology. Oxford, New york.

    Google Scholar 

  16. Sommacal L, Melchior P, Cabelguen J-M, Oustaloup A, et Ijspeert A (2005) Fractional model of a gastrocnemius muscle for tetanus pattern, Fifth ASME International Conference on Multibody Systems, Nonlinear Dynamics and Control, Long Beach, California, USA.

    Google Scholar 

  17. Subrahmanyam MB (August 1989) An extension of the simplex method to constrained nonlinear optimization, Int. J. Optim. Theory Appl., 62 (2):311-319.

    Article  MATH  MathSciNet  Google Scholar 

  18. Woods DJ (May 1985) An interactive approach for solving multi-objective optimization problems, Technical Report 85-5, Rice University, Houston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sommacal, L., Melchior, P., Cabelguen, JM., Oustaloup, A., Ijspeert, A. (2007). Fractional Multimodels of the Gastrocnemius Muscle for Tetanus Pattern. In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds) Advances in Fractional Calculus. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6042-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6042-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6041-0

  • Online ISBN: 978-1-4020-6042-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics