Skip to main content

Abscisic Acid In Plant Response And Adaptation To Drought And Salt Stress

  • Chapter
Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops

Abstract

The plant stress hormone abscisic acid (ABA) plays several critical roles in plant response to stress and stress tolerance. ABA is well studied for its roles in the activation of stress-responsive genes and the regulation of guard cell movement. More recently, ABA has also been demonstrated to regulate root adaptation to drought stress. To date, limited success has been achieved in regulating plant ABA action for increasing plant drought tolerance. Revealing the mechanisms of ABA action in stress adaptation will further help the development of hardy crop plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., and Harberd, N. P., 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science. 311: 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Apelbaum, A., and Yang, S. F. 1981. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol. 68: 594–596.

    Article  PubMed  CAS  Google Scholar 

  • Araus, J. L., Slafer, G. A., Reynolds, M. P., and Royo, C. 2002. Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot. 89: 925–40.

    Article  PubMed  Google Scholar 

  • Armstrong, F., Leung, J., Grabov, A., Brearley, J., Giraudat, J., and Blatt, M. R. 1995. Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc. Natl. Acad. Sci. USA. 92: 9520–9524.

    Article  PubMed  CAS  Google Scholar 

  • Bahieldin, A., Mahfouz, H. T., Eissa, H. F., Saleh, O. M., Ramadan, A. M., Ahmed, I. A., Dyer, W. E., El-Itriby, H. A., and Madkour, M. A. 2005. Field evaluation of transgenic wheat plants stably expressing HVA1 gene for drought tolerance. Physiol. Plant. 123: 421–427.

    Google Scholar 

  • Bajaj S., Targolli, J., Liu, L. F., Ho, T. H. D., and Wu, R. 1999. Transgenic approaches to increase dehydration-stress tolerance in plants. Mol. Breeding 5: 493–503.

    Article  CAS  Google Scholar 

  • Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J. 2000. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell. 12: 1103–1115.

    Article  PubMed  CAS  Google Scholar 

  • Bentsink, L., and Koornneerf, M. 2002. Seed dormancy and germination. In C. R. Somerville, E. M. Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Borrell, A. K., Hammer, G. L., and Henzell, R. G. 2000. Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci. 40: 1037–1048.

    Article  Google Scholar 

  • Bray, E. A. 1997. Plant responses to water deficit. Trends Plant Sci. 2: 48–54.

    Article  Google Scholar 

  • Burg, S. P., and Burg, E. A. 1965. The interaction between auxin and ethylene and its role in plant growth. Proc. Natl. Acad. Sci. USA. 55: 262–269.

    Article  Google Scholar 

  • Busk, K., and Pages, M. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425–435.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W. H., Liu, J., Zhou, Q. Y., Cao, Y. R., Zheng, S. F., Du, B. X., Zhang, J. S., and Chen, S. Y. 2006. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ. 29: 1210–1219.

    Article  PubMed  CAS  Google Scholar 

  • Champoux, M. C., Wang, G., Sarkarung, S., Mackill, D. J., O’Toole, J. C., Huang, N., and McCouch, S. R. 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor. Appl. Genet. 90: 969–981.

    Article  CAS  Google Scholar 

  • Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H. C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723–2743.

    Article  PubMed  CAS  Google Scholar 

  • Chérel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., and Thibaud, J. B. 2002. Physical and Functional Interaction of the Arabidopsis K+ Channel AKT2 and Phosphatase AtPP2CA. Plant Cell 14: 1133–1146.

    Article  PubMed  CAS  Google Scholar 

  • Chinusamy, V., Xiong L., and Zhu, J. K. 2005. Use of Genetic Engineering and Molecular Biology Approaches for Crop Improvement for Stress Environments. In: Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Edited by Ashraf, M., Haworth Press, pp. 47–107.

    Google Scholar 

  • Christmann, A., Grill, E., and Meinhard, M. 2003. Abscisic acid signaling. Topics Cur. Genet. 4: 39–71.

    Google Scholar 

  • Christmann, A., Hoffmann, T., Teplova, I., Grill, E., and Muller, A. 2005. Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis. Plant Physiol. 137: 209–219.

    Google Scholar 

  • Cominelli, E., Galbiati, M., Vavasseur, A., Conti, L., Sala, T., Vuylsteke, M., Leonhardt, N., Dellaporta, S. L., and Tonelli, C. 2005. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol. 15: 1196–1200.

    Google Scholar 

  • Cramer, G. R. 2002. Response of abscisic acid mutants of Arabidopsis to salinity. Funct. Plant Biol. 29: 561–567.

    Article  CAS  Google Scholar 

  • Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S., and McCourt, P. 1996. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 273: 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Deak, K. I., and Malamy, J. 2005. Osmotic regulation of root system architecture. Plant J 43: 17–28

    Article  PubMed  CAS  Google Scholar 

  • De Paepe, A., Vuylsteke, M., Van Hummelen, P., Zabeau, M., and van der Straeten, D. 2004. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J. 39: 537–559.

    Article  PubMed  CAS  Google Scholar 

  • De Smet, I., Signora, L., Beeckman, T., Inze, D., Foyer, C. H., and Zhang, H. 2003. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 33: 543–555.

    Article  PubMed  Google Scholar 

  • Dietz, K. J., Sauter, A., Wichert, K., Messdaghi, D., and Hartung, W. 2000. Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J. Exp. Bot. 51: 937–944.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, I. C. 2003. Hormonal interactions and stomatal responses. J. Plant Growth Reg. 22: 32–46.

    Article  CAS  Google Scholar 

  • Eapen, D., Barroso, M. L., Campos, M. E., Ponce, G., Corkidi, G., Dubrovsky, J. G., and Cassab, G. I. 2003. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol. 131: 536–546.

    Article  PubMed  CAS  Google Scholar 

  • Fan, L. M., Zhao, Z., and Assmann, S. M. 2004. Guard cells: a dynamic signaling model. Curr. Opin. Plant Biol. 7: 537–546.

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537.

    Article  CAS  Google Scholar 

  • Finkelstein, R. R., and Rock, C. D. 2002. Abscisic acid biosynthesis and response. In C. R. Somerville, E. M. Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Fisher, R. A., and Turner, N. C. 1978. Plant productivity in the arid and semiarid zones. Ann. Rev. Plant Physiol. 29: 277–317.

    Article  Google Scholar 

  • Frey, A., Audran, C., Marin, E., Sotta, B., and Marion-Poll, A. 1999. Engineering seed dormancy by the modification of zeaxanthin epoxidase gene expression. Plant Mol Biol. 39: 1267–1274.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto, S. Y., Ohta, M., Usui A., Shinshi, H., and Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell 12: 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, G. A., Irving, H. R., and Parish, R. W. 1990. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc. Natl. Acad. Sci. USA 87: 9645–9649.

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and McCourt, P. 2000. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell. 12: 1117–1126.

    Article  PubMed  CAS  Google Scholar 

  • Giuliani, S., Sanguineti, M. C., Tuberosa, R., Bellotti, M., Salvi, S., and Landi, P. 2005. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J. Exp. Bot. 56: 3061–3070.

    Article  PubMed  CAS  Google Scholar 

  • Gong, Q., Li, P., Ma, S., Rupassara, S. I., and Bohnert, H. J. 2005. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J. 44: 826–839.

    Article  PubMed  CAS  Google Scholar 

  • González-Guzmán, M., Apostolova, N., Belles, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., Micol, J. L., Serrano, R., and Rodriguez, P. L. 2002. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846.

    Google Scholar 

  • Goodger, J. Q., Sharp, R. E., Marsh, E. L., and Schachtman, D. P. 2005. Relationships between xylem sap constituents and leaf conductance of well-watered and water-stressed maize across three xylem sap sampling techniques. J. Exp. Bot. 56: 2389–2400.

    Google Scholar 

  • Guan, L. M., Zhao, J. and Scadalios, J. G. 2000. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J. 22: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Guiltinan, M. J., Marcotte, W. R. Jr, and Quatrano, R. S. 1990. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 250: 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, H., and Grossmann, K. 2000. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition. Plant Physiol. 124: 1437–1448

    Article  PubMed  CAS  Google Scholar 

  • van Hengel, A.. J., Barber, C., and Roberts, K. 2004. The expression patterns of arabinogalactan-protein AtAGP30 and GLABRA2 reveal a role for abscisic acid in the early stages of root epidermal patterning. Plant J. 39: 70–83.

    Article  PubMed  CAS  Google Scholar 

  • Henson, I. E., Mahalakshmi, V., Bidinger, F. R., and Alagarswamy, G. 1981. Genotypic variation in pearl millet (Pennisetum americanum (L.) Leeke), in the ability to accumulate abscisic acid in response to water stress. J. Exp. Bot. 32: 899–910;

    Article  CAS  Google Scholar 

  • Hetherington, A. M., and Woodward, F. I. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901–908.

    Article  PubMed  CAS  Google Scholar 

  • Himmelbach, A., Yang Y., and Grill, E. (2003). Relay and control of abscisic acid signaling. Curr. Opinion Plant Biol. 6: 470–479.

    Google Scholar 

  • Hose, E., Steudle, E., and Hartung, W. 2000. Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root pressure probes. Planta 211: 874–882.

    Article  PubMed  CAS  Google Scholar 

  • Hosy, E., Vavasseur, A., Mouline, K., Dreyer, I., Gaymard, F., Poree, F., Boucherez, J., Lebaudy, A., Bouchez, D., Very, A. A., Simonneau, T., Thibaud, J. B., and Sentenac, H. 2003. The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc. Natl. Acad. Sci. USA. 100: 5549–5554.

    Article  PubMed  CAS  Google Scholar 

  • Hoth, S., Morgante, M., Sanchez, J. P., Hanafey, M. K., Tingey, S. V., and Chua, N. H. 2002. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell Sci. 15: 115: 4891–900.

    Article  CAS  Google Scholar 

  • Hsiao, T. C., and Xu, L. K. 2000. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp. Bot. 51: 1595–1616.

    Article  PubMed  CAS  Google Scholar 

  • Ilahi, I., and Dörffling, K. 1982. Changes in abscisic acid and proline levels in maize varieties of different drought resistance. Physiol. Plant. 55: 129–135.

    Article  CAS  Google Scholar 

  • Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27: 325–333.

    Google Scholar 

  • Javot, H., and Maurel, C. 2002. The role of aquaporins in root water uptake. Ann. Bot. 90:.301–313.

    Article  PubMed  CAS  Google Scholar 

  • Jia, W., and Zhang, J. 1999. Stomatal closure is induced rather by prevailing xylem abscisic acid than by accumulated amount of xylem-derived abscisic acid. Physiol. Plant. 106: 268–275.

    Article  CAS  Google Scholar 

  • Jiang, M., and Zhang, J. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp. Bot. 53: 2401–2410.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H., Leigh, R. A., Tomos, A. D. & Jones, R. G. W. 1987. The effect of abscisic acid on cell turgor pressures, solute content and growth of wheat roots. Planta 170: 257–262.

    Article  CAS  Google Scholar 

  • Kizis, D., and Pages, M. 2002. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J. 30: 679–689.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M., Perfus-Barbeoch, L., Frelet, A., Gaedeke, N., Reinhardt, D., Mueller-Roeber, B., Martinoia, E., and Forestier, C. 2003. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J. 33: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, A., Kakimoto, Y., Fujii, N., and Takahashi, H. 2003. Physiological and genetic characterization of hydrotropic mutants of Arabidopsis thaliana. Biol. Sci. Space. 17: 243–244.

    PubMed  Google Scholar 

  • Koiwai, H., Nakaminami, K., Seo, M., Mitsuhashi, W., Toyomasu, T., and Koshiba, T. 2004. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol. 134: 1697–1707.

    Article  PubMed  CAS  Google Scholar 

  • Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X., and Harper, J. F. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130: 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  • Krochko, J. E., Abrams, G. D., Loewen, M. K., Abrams, S. R., and Cutler, A. J. 1998. (+)-Abscisic acid 8’-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol. 118: 849–860.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H., and Schroeder, J. I. 2006. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol. 140: 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., and Nambara, E. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23: 1647–1656.

    Article  PubMed  CAS  Google Scholar 

  • Kwak, J. M., Mori, I. C., Pei, Z. M., Leonhardt, N., Torres, M. A., Dangl, J. L., Bloom, R. E., Bodde, S., Jones, J. D., and Schroeder, J. I. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22: 2623–2633.

    Article  PubMed  CAS  Google Scholar 

  • Lafitte, R. H., and Courtois, B. 2002. Interpreting cultivar × environment interactions for yield in upland rice: assigning value to drought adaptive traits. Crop Sci 42:1409–1420.

    Article  Google Scholar 

  • Lemichez, E., Wu, Y., Sanchez, J. P., Mettouchi, A., Mathur, J., and Chua, N. H. 2001. Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Genes. Dev. 15: 1808–1816.

    Article  PubMed  CAS  Google Scholar 

  • Leung, J., and Giraudat, J. 1998. Abscisic acid signal transduction. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49:199–222.

    Article  CAS  Google Scholar 

  • Levchenko, V., Konard, K. R., Dietrich, P., Roelfsema, R. G., and Hedrick, R. (2005). Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc. Natl. Acad. Sci. USA 102: 4203–4208

    Article  PubMed  CAS  Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stress. Volume II. Water, radiation, salt and other stresses. Academic Press, New York.

    Google Scholar 

  • Leyman, B., Geelen, D., Quintero, F. J., Blatt, M. R. 1999. A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science. 283: 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. and Zhang, S. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces thylene biosynthesis in Arabidopsis. Plant Cell 16: 3386–3399.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., and Fedoroff, N. 2000. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12: 2351–2365.

    Google Scholar 

  • Ludewig, M., Dorffling, K., and Siefert, H. 1988. Abscisic acid and water transport in sunflowers. Planta 175: 325–333.

    Article  CAS  Google Scholar 

  • Luquez, V. M., and Guiarmet, J. J. 2002. The stay green mutations d1 and d2 increase water stress susceptibility in soybeans. J. Exp. Bot. 53: 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S., Gong, Q., and Bohnert, H. 2006. Dissecting salt stress pathways. J. Exp. Bot. 57: 1097–1107.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, A., Hasegawa, P. M., Bressan, R. A., Consiglio, M. F., and Joly, R. J. 2001. Unravelling the functional relationship between root anatomy and stress tolerance. Aust J Plant Physiol. 28: 999–1004.

    Google Scholar 

  • Marcotte, W. R. Jr., Russell, S. H., and Quatrano, R. S. 1989. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1: 969–976.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater, J. M., Coupland G, Dean, C., and Koornneef, M. 1994. The Transition to Flowering in Arabidopsis. In Arabidopsis, E. M. Meyerowitz, and C. R. Somerville, eds (Plainview, New York: Cold Spring Harbor Laboratory Press), pp. 403–433.

    Google Scholar 

  • Mauch-Mani, B., and Mauch, F. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opinon Plant Biol. 8:409–414

    Article  CAS  Google Scholar 

  • McCarty, D. R. 1995. Genetic control and integration of maturation and germination pathways in seed development. Ann. Rev. Plant Physiol. 46: 71–93.

    Article  CAS  Google Scholar 

  • McMichael, B. L., Jordan, W. R. and Powell, R. D. 1972. An effect of water stress on ethylene production by intact cotton petioles. Plant Physiol. 49: 658–660.

    Article  PubMed  CAS  Google Scholar 

  • Merritt, F., Kemper, A., and Tallman, G. 2001. Inhibitors of ethylene synthesis inhibit auxin-induced stomatal opening in epidermis detached from leaves of Vicia faba L. Plant Cell Physiol 42: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang, X. 2006. A bifurcating pathway directs abscisic acid effects on stomatoal closure and opening in Arabidopsis. Science 312: 264–266.

    Article  PubMed  CAS  Google Scholar 

  • Moons, A. 2003. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett. 553: 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Mundy, J., Yamaguchi-Shinozaki, K., and Chua, N. H. 1990. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA. 87:1406–1410.

    Article  PubMed  CAS  Google Scholar 

  • Murata, Y., Pei, Z. M., Mori, I. C., and Schroeder, J. 2001. Abscisic acid activation of plasma membrane Ca2+channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell. 13: 2513–2523.

    Google Scholar 

  • Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., and Giraudat, J. 2002. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell. 14: 3089–3099.

    Article  PubMed  CAS  Google Scholar 

  • Nambara, E., and Marion-Poll, A. 2005. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 56: 165–185.

    Article  PubMed  CAS  Google Scholar 

  • Narusaka, Y., Nakashima, K., Shinwari, Z. K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2003. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34: 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, H. T., Babu, R. C., and Blum, A. 1997. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci. 37:1426–1434.

    Article  Google Scholar 

  • Ohta, M., Guo, Y., Halfter, U., and Zhu, J. K. 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. USA 100: 11771–11776.

    Article  PubMed  CAS  Google Scholar 

  • Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2005. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17: 1105–19.

    Article  PubMed  CAS  Google Scholar 

  • Pei, Z. M., Ghassemian, M., Kwak, C. M., McCourt, P., and Schroeder, J. I. 1998. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Pei, Z. M., and Kuchitsu, K. 2005. Early ABA signaling events in guard cells. J. Plant Growth Reg. 24: 296–307.

    Article  CAS  Google Scholar 

  • Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G. J., Grill, E. and Schroeder, J. I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406: 731–734

    Article  PubMed  CAS  Google Scholar 

  • Peng, Y. B., Zou, C., Wang, D. H., Gong, H. Q., Xu, Z. H., and Bai, S. N. 2006. Preferential localization of abscisic acid in primordial and nursing cells of reproductive organs of Arabidopsis and cucumber. New Phytol. 170: 459–466.

    Google Scholar 

  • Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H. P., Muntz, K., Conrad, U. 1997. Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J. 16: 4489–4496.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro, H. A., Damatta, F. M., Chaves, A. R., Loureiro, M. E., and Ducatti, C. 2005. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann. Bot. 96: 101–108.

    Article  PubMed  Google Scholar 

  • Qin, X., and Zeevaart, J. A. 2002. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol. 128: 544–551.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., and Zhu, J. K. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA. 99: 8436–8441.

    Article  PubMed  CAS  Google Scholar 

  • Quarrie, S. A. 1991. Implications of genetic differences in ABA accumulation for crop production. In: Davies, W. J., Jones, H. G. eds. Abscisic acid: physiology and biochemistry. Oxford, UK: Bios Scientific Publishers Ltd. 227–243.

    Google Scholar 

  • Quarrie S. A., and Jones, H. G. 1979. Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Ann. Bot. 44: 323–332.

    CAS  Google Scholar 

  • Quesada, V., Ponce, M. R., and Micol, J. L. (2000). Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154: 421–436

    PubMed  CAS  Google Scholar 

  • Quesada, V., Garcia-Martinez, S., Piqueras, P., Ponce, M. R., and Micol, J. L. 2002. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol. 130: 951–963.

    Article  PubMed  CAS  Google Scholar 

  • Quintero, J. M., Fournier, J. M., Benlloch, M. 1999. Water transport in sunflower root systems: effects of ABA, Ca2+ status and HgCl2. J. Exp. Bot. 50: 1607–1612.

    Article  CAS  Google Scholar 

  • Quintero, F. J., Ohta, M., Shi, H., Zhu, J. K., and Pardo, J. M. 2002. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc. Natl. Acad. Sci. USA. 99: 9061–9066.

    Article  PubMed  CAS  Google Scholar 

  • Raamanjulu, S., and Bartels, D. 2002. Drought- and desciccation-induced modulation of gene expression in plants. Plant Cell Environ. 25: 141–151.

    Article  Google Scholar 

  • Razem, F. A., El-Kereamy, A., Abrams, S. R., and Hill, R. D. 2006. The RNA-binding protein FCA is an abscisic acid receptor. Nature 439: 290–294.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Z. H., Gao, J. P., Li, L. G., Cai, X. L., Huang, W., Chao, D. Y., Zhu, M. Z., Wang, Z. Y., Luan, S., and Lin, H. X. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37: 1141–1146.

    Article  PubMed  CAS  Google Scholar 

  • Riccardi, F., Gazeau, P., de Vienne, D., and Zivy, M. 1998. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol. 117: 1253–1263.

    Article  PubMed  CAS  Google Scholar 

  • Rock, C. D. and Zeevaart, J. A. D. (1991). The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. USA. 88: 7496–7499.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, Milla, M. A., Maurer, A., Rodriguez Huete, A., and Gustafson, J. P. 2003. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 36: 602–615.

    Article  CAS  Google Scholar 

  • Ruggiero, B., Koiwa, H., Manabe, Y., Quist, T. M., Inan, G., Saccardo, F., Joly, R. J., Hasegawa, P. M., Bressan, R. A., and Maggio, A. 2004. Uncoupling the effects of abscisic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol. 136: 3134–3147.

    Article  PubMed  CAS  Google Scholar 

  • Rus, A., Lee, B. H., Munoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J. K., Bressan, R. A., Hasegawa, P. M. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 136: 2500–2511.

    Article  PubMed  CAS  Google Scholar 

  • Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., Mizutani, M. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 134: 1439–1449.

    Article  PubMed  CAS  Google Scholar 

  • Samet, J. S., and Sinclair, T. R. 1980. Leaf Senescence and Abscisic Acid in Leaves of Field-grown Soybean. Plant Physiol. 66:1164–1168.

    Article  PubMed  CAS  Google Scholar 

  • Sauter, A., Dietz, K. J., and Hartung, W. 2002. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signaling. Plant Cell Environ. 25: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Schnall, J. A., and Quatrano, R. S. 1992. Abscisic acid elicits the water-stress response in root hairs of Arabidopsis. Plant Physiol. 100: 216–218

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, S. H., Qin, X., and Zeevaart, J. A. 2003. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131:1591–601.

    Google Scholar 

  • Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 14: 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, R. E. 2002. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ. 25: 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., and Nguyen, H. T. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55: 2343–2351.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q., and Ho, T.-H. D. (1995). Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA responsive complexes each containing a G-box and a novel cis acting element. Plant Cell 7: 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H., and Zhu, J. K. 2002. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 50: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Skriver, K., and Mundy, J. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 2: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Song, C. P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., and Zhu, J. K. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell. 17: 2384–2396.

    Article  PubMed  CAS  Google Scholar 

  • Staxen, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M., and McAinsh, M. R. 1999. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl. Acad. Sci. USA. 96: 1779–1784

    Article  PubMed  CAS  Google Scholar 

  • Suhita, D., Raghavendra, A. S., Kwak, J. M., and Vavasseur, A. 2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134:1536–1545.

    Article  CAS  Google Scholar 

  • Taji, T., Seki, M., Satou, M., Sakurai, T., Kobayashi, M., Ishiyama, K., Narusaka, Y., Narusaka, M., Zhu, J. K. and Shinozaki, K. 2004. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol. 135: 1697–1709.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, N., Goto, N., Okada, K., and Takahashi, H. 2002. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta. 216: 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., and Hasezawa, S. 2005. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol. 138: 2337–2343.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, I. B., Sonneveld, T., Bugg, T. D. H., and Thompson, A. L. 2005. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophylls precursors. J. Plant Growth Reg. 24: 253–273.

    CAS  Google Scholar 

  • Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17: 113–122.

    PubMed  CAS  Google Scholar 

  • Vartanian, N., Marcotte, L., and Ciraudat, J. 1994. Drought rhizogenesis in Arabidopsis thaliana, differential responses of hormonal mutants. Plant Physiol. 104: 761–767.

    PubMed  CAS  Google Scholar 

  • Vinocur, B., and Altman, A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Vranova, E., Tähtiharju, S., Sriprang, R., Willekens, H., Heino, P., Palva, E. T., Inzé, D., and Van Camp, W. V. 2001. The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. J. Exp. Bot. 52: 181–182.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. Q., Ullah, H., Jones, A. M., and Assmann, S. M. 2001. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science. 292: 2070–2072.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., and Huang, B. 2003. Genotypic variation in abscisic acid accumulation, water relations, and gas exchange fro Kentucky bluegrass exposed to drought stress. J. Am. Soc. Hort. Sci. 128: 349–355.

    CAS  Google Scholar 

  • Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D. T., McCourt, P., and Huang, Y. 2005. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J. 43: 413–424.

    Article  PubMed  CAS  Google Scholar 

  • van der Weele, C. M., Spollen, W. G., Sharp, R. E., and Baskin, T. I. 2000. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J. Exp. Bot. 51: 1555–1562.

    Article  PubMed  Google Scholar 

  • Weiler, E. W. 1980. Radioimmunoassays for the differential and direct analysis of free and conjugated abscisic acid in plant extracts. Planta 148: 26–36.

    Article  Google Scholar 

  • Wilkinson, S., and Davies, W. J. 2002. ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ. 25: 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Wright, C. A., and Beattie, G. A. 2004. Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 101: 3269–3274.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Y., and Cosgrove, D. J. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J. Exp. Bot. 51:1543–1553.

    Google Scholar 

  • Xie, Z., Ruas, P., Shen, Q. J. 2006. Regulatory networks of the phytohormone abscisic acid. Vitamins and Hormones 72: 235–269.

    Article  CAS  Google Scholar 

  • Xiong, L., Ishitani, M., Lee, H., and Zhu, J. K. 2001. The Arabidopsis LOS5/ABA3 encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13: 2063–2083.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Lee, H., Ishitani, M., and Zhu, J. K. 2002. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277: 8588–8596.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Wang, R., Mao, G., and Koczan, J. (2006). Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol. 142: 1065–1074.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., and Zhu, J. K. 2003. Regulation of abscisic acid biosynthesis. Plant Physiol. 133: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J. C., Li, J. Z., Zheng, X. W., Zou, L. X., and Zhu, L. H. 2001. QTL mapping of the root traits in rice seedling. Acta Genetica Sinica 28: 433–438.

    PubMed  CAS  Google Scholar 

  • Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., and Wu, K. 2005. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol. Biol. 58: 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M., and Pardo, J. M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 20: 529–539.

    Article  Google Scholar 

  • Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J. R., and Shinozaki, K. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol. 43: 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. 2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 281: 5310–5318.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., and Shinozaki, K., and Hirayama, T. 2006. ABA-hypersensitive germination 3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 140: 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Young, T. E., Meeley, R. B., and Gallie, D. R. 2004. ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J. 40: 813–825.

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart, J. A. D. and Creelman, R. A. 1988. Metabolism and physiology of abscisic acid. Ann. Rev. Plant Physiol. 39: 439–473.

    Article  CAS  Google Scholar 

  • Zhang, J. H., Zhang, X., and Liang, J. 1995. Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment. New Phytol. 131: 329–336.

    Article  CAS  Google Scholar 

  • Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004). Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA 101: 9508–9513.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Zhang, Z., Chen, J., Chen, Q., Wang, X. C., and Huang, R. 2005. Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta. 222: 494–501.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X. C., and Schaller, G. E. 2004. Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Let. 562: 189–192.

    Article  CAS  Google Scholar 

  • Zhu, J., Gong, Z., Zhang, C., Song, C. P., Damsz, B., Inan, G., Koiwa, H., Zhu, J. K., Hasegawa, P. M., and Bressan, R. A. 2002. OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. Plant Cell. 14: 3009–3028.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. K. 2001. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124: 941–948.

    Article  Google Scholar 

  • Zhu, J. K., Liu, J., and Xiong, L. 1998. Genetic analysis of salt tolerance in arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell. 10: 1181–1191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Xiong, L. (2007). Abscisic Acid In Plant Response And Adaptation To Drought And Salt Stress. In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5578-2_9

Download citation

Publish with us

Policies and ethics