Skip to main content

Jasmonates

  • Chapter
Plant Hormones

Abstract

Jasmonic acid (JA1) and its volatile methyl ester, MeJA, are fatty acidderived cyclopentanones that occur ubiquitously in the plant kingdom. Since the discovery of jasmonates (JAs) in plants over 40 years ago, our understanding of the biosynthesis and physiological function of these compounds has been marked by several major developments. Experiments performed in the 1980s elucidated the JA biosynthetic pathway and demonstrated that exogenous JAs exert effects on a wide range of physiological processes. The discovery in the early 1990s that JAs act as potent signals for the expression of defensive proteinase inhibitors (PIs) aroused intense interest in the function of hormonally active JAs in plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger S (2002) Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta 214: 497-504

    Article  CAS  PubMed  Google Scholar 

  2. Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93: 12053-12058

    Article  CAS  PubMed  Google Scholar 

  3. Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7: 315-322

    Article  PubMed  Google Scholar 

  4. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48: 355-381

    Article  CAS  PubMed  Google Scholar 

  5. Creelman RA, Rao MV (2001) The oxylipin pathway in arabidopsis. In CR Somerville, EM Meyerowitz, eds, The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD. doi/10.1199/tab.0009,

    Google Scholar 

  6. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32: 457-466

    Article  CAS  PubMed  Google Scholar 

  7. Dicke M, van Poecke RMP (2002) Signalling in plant-insect interactions: signal transduction in direct and indirect defence. In D Scheel, C Wasternack, eds, Plant Signal Transduction. Oxford University Press, Oxford, UK

    Google Scholar 

  8. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557-1566

    Article  CAS  PubMed  Google Scholar 

  9. Farmer EE, Ryan CA (1990) Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713-7718

    Article  CAS  PubMed  Google Scholar 

  10. Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134

    Article  CAS  PubMed  Google Scholar 

  11. Farmer EE (2001) Surface-to-air signals. Nature 411: 854-856

    Article  CAS  PubMed  Google Scholar 

  12. Felton GW, Korth KL (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3: 309-314

    Article  CAS  PubMed  Google Scholar 

  13. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53: 275-297

    Article  CAS  PubMed  Google Scholar 

  14. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé, Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100: 8595-8600

    Article  CAS  PubMed  Google Scholar 

  15. Graham IA, Eastmond PJ (2002) Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog Lipid Res 41: 156-181

    Article  CAS  PubMed  Google Scholar 

  16. Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389-2393

    Article  CAS  PubMed  Google Scholar 

  17. He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128: 876-884

    Article  CAS  PubMed  Google Scholar 

  18. Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98: 1083-1088

    Article  CAS  PubMed  Google Scholar 

  19. Howe G, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Op Plant Biol. 5: 230-236

    Article  CAS  Google Scholar 

  20. Ishiguro S, Kawai-Oda A, Ueda K, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209

    Article  CAS  PubMed  Google Scholar 

  21. Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125: 66-71

    Article  Google Scholar 

  22. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53: 299-328

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5: 325-331

    Article  CAS  PubMed  Google Scholar 

  24. Lauchli R, Boland W (2003) Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism. Chem Record 3: 12-21

    Article  CAS  Google Scholar 

  25. Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA (2003) The tomato Supperssor of prosystemin-mediated responses2 (Spr2) gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal. Plant Cell 15: 1646-1661

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Li C, Howe GA (2001) Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol 127: 1414-1417

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonic acid synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99: 6416-6421

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Williams MM, Loh Y-T, Lee GI, Howe GA (2002) Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol 130: 494-503

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Schuler MA, Berenbaum MR (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419: 712-715

    Article  CAS  PubMed  Google Scholar 

  30. Liechti R, Farmer E E (2002) The jasmonate pathway. Science 296: 1649-1650

    Article  CAS  PubMed  Google Scholar 

  31. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165-78

    Article  CAS  PubMed  Google Scholar 

  32. Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate – responsive gene expression in alkaloid metabolism. Trends Plant Sci 6: 212-219

    Article  CAS  PubMed  Google Scholar 

  33. Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31: 1-12

    Article  PubMed  Google Scholar 

  34. Preston CA, Betts H, Baldwin IT (2002) Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighboring tobacco, Nicotiana attenuata. J Chem Ecol 28: 2343-2369

    Article  CAS  PubMed  Google Scholar 

  35. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477: 112-121

    CAS  PubMed  Google Scholar 

  36. Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J Exp Bot 52: 11-23

    Article  CAS  PubMed  Google Scholar 

  37. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98: 4788-4793

    Article  CAS  PubMed  Google Scholar 

  38. Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14: 1405-1415

    Article  CAS  PubMed  Google Scholar 

  39. Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signalling. Plant J 33: 577-589

    Article  CAS  PubMed  Google Scholar 

  40. Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: The role of cyclopentenones. Proc Natl Acad Sci USA 98: 12837-12842

    Article  CAS  PubMed  Google Scholar 

  41. Strassner J, Schaller F, Frick U, Howe GA, Weiler EW, Amrhein N, Macheroux P, Schaller A. (2002) Characterization and cDNA-microarray expression analysis of 12- oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32: 585-601

    Article  CAS  PubMed  Google Scholar 

  42. Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686-688

    Article  CAS  Google Scholar 

  43. Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell S153-S164.

    Google Scholar 

  44. Stratmann J (2003) Long distance run in the wound response – jasmonic acid pulls ahead. Trends Plant Sci (in press)

    Google Scholar 

  45. Vick B, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75: 458-461

    Article  CAS  PubMed  Google Scholar 

  46. Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41: 254-278

    Article  CAS  PubMed  Google Scholar 

  47. Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72: 165-221

    Article  CAS  PubMed  Google Scholar 

  48. Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7: 217-224

    Article  CAS  PubMed  Google Scholar 

  49. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nature Biotechnol 14: 1129-1132

    Article  CAS  Google Scholar 

  50. Zhao Y, Thilmony R, Bender C, He SY, Howe GA (2003) The Hrp type III secretion system and coronatine of Pseudomonas syringae pv. tomato coordinately modify host defense by targeting the jasmonate signaling pathway in tomato. Plant J 36: 485-499

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg A. Howe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Howe, G.A. (2010). Jasmonates. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2686-7_28

Download citation

Publish with us

Policies and ethics