Skip to main content

Population-Environment Interactions with an Emphasis on Land-Use/Land-Cover Dynamics and the Role of Technology

  • Chapter
Geography and Technology

Abstract

Technology has played a fundamental role in mapping, monitoring, and modeling land-use/land-cover (LULC) dynamics across a range of spatial and temporal scales and local, regional, and global extents. Spatial technologies, including remote sensing, geographic information systems (GIS), global positioning systems (GPS), data visualizations, spatial and statistical analyses, and models have combined to position people, place, and the environment within a spatially and temporally explicit context. These technologies help characterize the rate, pattern, and composition of LULC dynamics so that associated drivers of land-use change can be related to socioeconomic, demographic, geographic, and environmental dynamics. Special challenges exist because of inherent differences in how people and the environment are characterized in both space and time. Theories and practices from the social, natural, and spatial sciences are integrated to study LULC dynamics within the context of human-environment interactions. The goal has been to characterize the composition and spatial organization of LULC through its structure, function, and change and to relate the drivers of change to observed or simulated LULC patterns at different scales of analysis. Here we emphasize the use of technology for characterizing LULC dynamics, collecting and linking data from households, communities, regions, and nations with spatially explicit data collected, managed, and integrated within a Geographic Information Science (GISc) perspective. We discuss how technology aids in (1) mapping, monitoring, and modeling LULC dynamics by considering remote-sensing systems for LULC mapping, (2) image change-detection approaches for monitoring land-cover dynamics, (3) socioeconomic and demographic surveys linked to place through GPS technology and other approaches for characterizing the human dimension, (4) GIS for deriving and integrating disparate data, and (5) land-cover models for creating multilevel and spatial simulation of LULC dynamics. We describe how technology is being used to consider human behavior and agency in conjunction with a wide variety of processes associated with land-use/land-cover change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, C., Green, G, Grove, L.M., Evans, T.P., and Schweik, C. (2000). A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice, Fourth International Conference on Integrating GIS and Environmental Modeling (GIS/ EM4), Banff, Canada.

    Google Scholar 

  • Allen, T.R. and Kupfer, J.A. (2001). Spectral Response and Spatial Pattern of Fraser Fir Mortality and Regeneration, Great Smoky Mountains, USA, Plant Ecology 156: 59–74.

    Article  Google Scholar 

  • Allen, T.R. and Walsh, S.J. (1993). Characterizing Multitemporal Alpine Snowmelt Patterns for Ecological Inferences, Photogrammetric Engineering and Remote Sensing 59: 1521–29.

    Google Scholar 

  • Allen, T.R. and Walsh, S.J. (1996). Spatial and Compositional Structure of the Alpine Treeline Ecotone, Photogrammetric Engineering and Remote Sensing 62: 1261–68.

    Google Scholar 

  • Angelsen, A. and Kaimowitz, D. (1999). Rethinking the Causes of Deforestation: Lessons from Economic Models, World Bank Research Observer 14: 73–98.

    Article  Google Scholar 

  • Archer, E.R.M. (in press). Beyond the Climate Versus Grazing Impasse: Using Remote Sensing to Investigate the Effects of Grazing System Choice on Vegetation Cover in Eastern Karoo, Journal of Arid Environments.

    Google Scholar 

  • Batty, M. and Howes, D. (1996). Exploring Urban Development Dynamics Through Visualization and Animation. In Parker, D. (Ed.) Innovations in GIS, 149–60. London: Taylor and Francis.

    Google Scholar 

  • Bian, L. (2003). Retrieving Urban Objects Using a Wavelet Transform Approach, Photogrammetric Engineering and Remote Sensing 69: 133–42.

    Google Scholar 

  • Bilsborrow, R.E. (1994). The Roles of Population and Development in Deforestation in Developing Countries, UN Expert Group Meeting on Population, Environment, and Development, New York.

    Google Scholar 

  • Brown, D.G. and Walsh, S.J. (1991). Compatibility of Non-synchronous in-situ Water Quality Data and Remotely-Sensed Spectral Information for Assessing Lake Turbidity Levels in Complex and Inaccessible Terrain, GeoCarto International 6: 5–11.

    Article  Google Scholar 

  • BurnSilver, S.B., Boone, R.B., and Galvin, K.A. (2003). Linking Pastoralists to a Heterogeneous Landscape: The Case of Four Maasai Group Ranches in Kajiado District, Kenya. In Fox, J., Rindfuss, R.R., Walsh, S.J., and Mishra, V. (Eds.) People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS, 173–99. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Chameides, W.L., Kasibhatla, P.S., Yienger, J., and Levy II, H. (1994). Growth in Continental-Scale Metro-Agroplexes: Regional Ozone Pollution and World Food Production, Science 264: 74–77.

    Article  Google Scholar 

  • Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., Pascual, M., Pielke Jr., R., Pizer, W., Pringle, C., Reid, W.V., Rose, K.A., Sala, O., Schlesinger, W.H., Wall, D.H., and Wear, D. (1999). Ecological Forecasts: An Emerging Imperative, Science 286: 685–86.

    Article  Google Scholar 

  • Clarke, K.C., Gaydos, L., and Hoppen, S. (1997). A Self-modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay area, Environment and Planning B 23: 247–61.

    Google Scholar 

  • Clarke, K.C., Hoppen, S., and Gaydos, L. (1996). Methods and Techniques for Rigorous Calibration of a Cellular Automaton Model of Urban Growth, Third International Conference/Workshop on Integrating GIS and Environmental Modeling. Santa Barbara: National Center for Geographic Information and Analysis.

    Google Scholar 

  • Costanza, R., and Ruth, M. (1998). Using Dynamic modelling to Scope Environmental Problems and Build Consensus, Environmental Management 22: 183–95.

    Article  Google Scholar 

  • Crews-Meyer, K.A. (2002a). Challenges for GlScience: Assessment of Policy Relevant Human-Environment Interactions. In Walsh, S.J. and Crews-Meyer, K.A. (Eds.) Linking People, Place, and Policy: A GlScience Approach, 1–5. Boston: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Crews-Meyer, K.A. (2002b). Characterizing Landscape Dynamism Using Paneled-Pattern Metrics, Photogrammetric Engineering and Remote Sensing 68: 1031–40.

    Google Scholar 

  • Crutzen, P.J. and Andreae, M.O. (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles, Science 250: 1669–78.

    Article  Google Scholar 

  • Csillag, F. (1997). Quadtrees: Hierarchical Multiresolution Data Structures for Analysis of Digital Images. In Quattrochi, D.A. and Goodchild, M.F. (Eds.) Scale in Remote Sensing and GIS, 247–72. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Csillag, F. and Kabos, S. (1996). Hierarchical Decomposition of Variance with Applications in Environmental Mapping Based on Satellite Images, Mathematical Geology 28: 385–405.

    Article  Google Scholar 

  • Daily, GC., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P. R., Folke, C., Hansson, A., Jansson, B-O., Kautsky, N., Levin, S., Lubchenco, J., Mäler, K-G., Simpson, D., Starlet, D., Tillman, D., and Walker, B. (2000). The Value of Nature and Nature of Value, Science 289: 395–96.

    Article  Google Scholar 

  • DeFries, R., Field, C., Fung, I., Collatz, G., and Bounoua, L. (1999). Combining Satellite Data and Biogeochemical Models to Estimate Global Effects of Human-Induced Land Cover Change on Carbon Emissions and Primary Productivity, Global Biogeochemical Cycles 13: 803–15.

    Article  Google Scholar 

  • DeFries, R., Hansen, M., Townshend, J.R.G., Janetos, A., and Loveland, T. (2000). A New Global Dataset of PercentTree Cover Derived from Remote Sensing, Global Change Biology 6: 247–54.

    Article  Google Scholar 

  • Dunning, J.B., Stewart, D.J., Danielson, B.J., Noon, B.R., Root, T.L., Lamberson, R.H., and Stevens, E.E. (1995). Spatially Explicit Population Models: Current Forms and Future Uses, Ecological Applications 5: 3–11.

    Article  Google Scholar 

  • Epstein, J.M. (1999). Agent-Based Models and Generative Social Science, Complexity 4: 41–60.

    Article  Google Scholar 

  • Evans, T.P., Manire, A., de Castro, F., Brondizio, E., and McCracken, S. (2001). A Dynamic Model of Household Decision-making and Parcel Level Landcover Change in the Eastern Amazon, Ecological Modelling 143: 95–113.

    Article  Google Scholar 

  • Evans, T.P. and Moran, E.F. (2002). Spatial Integration of Social and Biophysical Factors Related to Landcover Change. In Lutz, W., Prskawetz, A., and Sanderson, W.C. (Eds.) Population and Environment: Methods of Analysis. New York: Population Council.

    Google Scholar 

  • Fischer, G and Sun, L. (2001). Model Based Analysis of Future Land-Use Development in China, Agriculture, Ecosystems, and Environment 85: 163–76.

    Article  Google Scholar 

  • Flood, M. and Gutelius, B. (1997). Commercial Implications of Topographic Terrain Mapping Using Scanning Airborne Laser Radar, Photogrammetric Engineering and Remote Sensing 63: 327.

    Google Scholar 

  • Fox, J., Rindfuss, R.R., Walsh, S.J., and Mishra, V. (Eds.) (2003). People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Frohn, R.C., McGwire, K.C., Dale, V.H., and Estes, J.E. (1996). Using Satellite Remote Sensing Analysis to Evaluate a Socioeconomic and Ecological Model of Deforestation in Rondonia, Brazil, International Journal of Remote Sensing 17: 3233–55.

    Article  Google Scholar 

  • Geist, H. and Lambin, E. (2001). What Drives Tropical Deforestation? A Meta-Analysis of Proximate and Underlying Causes of Deforestation Based on Subnational Case Study Evidence. Luovain-la-Neuve, BE., LUCC International Project Office.

    Google Scholar 

  • Gell-Mann, M. (1994). The Quark and the Jaguar. New York: Freeman.

    Google Scholar 

  • Goodin, D., Han, L., Fraser, R., Rundquist, D., and Stebbins, W. (1993). Analysis of Suspended Solids in Water Using Remotely Sensed High Resolution Derivative Spectra, Photogrammetric Engineering and Remote Sensing 59: 505–10.

    Google Scholar 

  • Green, K., Kempka, D., and Lackey, L. (1994). Using Remote Sensing to Detect and Monitor Land-Cover and Land-Use Change, Photogrammetric Engineering and Remote Sensing 60: 331–37.

    Google Scholar 

  • Grove, M., Schweik, C., Evans, T.P., and Green, G (2002). Modeling Human-Environment Systems. In Clarke, K.C., Parks, B.O., and Crane, M.P (Eds.) Geographic Information Systems and Environmental Modeling, 160–88. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Haan, N., Gumbo, D., Eastman, J.R., Toledano, J., and Snel, M. (2002). Linking Geomatics and Participatory Social Analysis for Environmental Monitoring: Case Studies from Malawi, Cartographica 37: 21–32.

    Article  Google Scholar 

  • Hoffman, M., Kelley, H., and Evans, T. (2002). Simulating Land Cover Change in Indiana: An Agent-Based Model of Deforestation. In Janssen, M. (Ed.) Complexity and Ecosystem Management: The Theory and Practice of Multi-Agent Approaches. Cheltenham UK, Northampton: Edward Elgar Publishers.

    Google Scholar 

  • Homewood, K., Lambin, E.F., Coast, E., Kariuki, A., Kikula, I., Kivelia, J., Said, M., Serneels, S., and Thompson, M. (2001). Long-term Changes in Serengeti-Mara Wildebeest and Land Cover: Pastoralism, Population, or Policies? Proceedings of the National Academy of Sciences 98: 12544–49.

    Article  Google Scholar 

  • IGBP-IHDP (1995). Land-Use and Land-Cover Change Science/Research Plan. IGBP Report No. 35 and IHDP Report No. 7. Stockholm: IGBP and Geneva: IHDP.

    Google Scholar 

  • IGBP-IHDP (1999). Land-Use and Land-Cover Change (LUCC). Implementation Strategy. IGBP Report No. 48 and IHDP Report No. 10. Stockholm: IGBP and Bonn: IHDP.

    Google Scholar 

  • Irwin, E.G and Geoghegan, J. (2001). Theory, Data, Methods: Developing Spatially-Explicit Economic Models of Land Use Change, Agriculture, Ecosystems and Environment 84: 7–24.

    Article  Google Scholar 

  • Janssen, M.A. (2000). The Human Factor in Ecological Models, Ecological Economics 35: 307–10.

    Article  Google Scholar 

  • Jensen, J.R. (2000). Remote Sensing of the Environment: An Earth Resource Perspective. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Johnson, D.L. and Lewis, L.A. (1995). Land Degradation: Creation and Destruction. Oxford, UK: Blackwell.

    Google Scholar 

  • Johnson, N., Revenga, C., and Echeverria, J. (2001). Managing Water for People and Nature, Science 292: 1071–72.

    Article  Google Scholar 

  • Kasperson, J.X., Kasperson, R.E., and Turner IIB.L, . (Eds.) (1995). Regions at Risk: Comparison of Threatened Environments. Tokyo: United Nations University Press.

    Google Scholar 

  • Kates, R.W., Clark, W.C., Corell, R., Hall, J.M., Jaeger, C.C., Lowe, I., McCarthy, J.J., Schellenhuber, H.J., Bolin, B., Dickson, N.M., Faucheaux, S., Gallopin, G C., Grübler, A., Huntley, B., Jäger, J., Jodha, N.S., Kasperson, R.E., Mabogunje, A., Matson, P., Mooney, H., Moore, B., III, O’Riordan, T., and Svedin, U. (2001). Sustainability Science, Science 292: 641–42.

    Article  Google Scholar 

  • Kaufmann, R. and Seto, K. (2001). Change Detection, Accuracy, and Bias in a Sequential Analysis of Landsat Imagery in the Pearl River Delta, China: Economic Techniques, Agriculture, Ecosystems, and Environment 85: 95–105.

    Article  Google Scholar 

  • Laird, N.M. and Ware, J.H. (1982). Random-Effects Models for Longitudinal Data, Biometrics 38: 963–74.

    Article  Google Scholar 

  • Lambin, E.F., Agbola, S.B., Angelsen, A., Bruce, J.W., Coomes, O.T., Dirzo, R., Fischer, G, Folke, C., George, P.S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E.F., Mortimore, M., Ramakrishnan, P.S., Richards, J.F., Skanes, H., Steffen, W., Stone, GD., Svedin, U., Veldkamp, T.A., Vogel, C., Xu, J., Turner, B.L., and Geist, H.J. (2001). The Causes of Land-Use and Land-Cover Change: Moving Beyond the Myths, Global Environmental Change 11: 261–69.

    Article  Google Scholar 

  • Lambin, E.F. (1996). Change Detection at Multiple Temporal Scales: Seasonal and Annual Variations in Landscape Variables, Photogrammetric Engineering and Remote Sensing 62: 931–38.

    Google Scholar 

  • Lambin, E.F. (1999). Monitoring Forest Degradation in Tropical Regions by Remote Sensing: Some Methodological Issues, Global Ecology and Biogeography 8: 191–98.

    Article  Google Scholar 

  • Laney, R.M. (2002). Disaggregating Induced Intensification for Land-Change Analysis: A Case Study from Madagascar, Annals of the Association of American Geographers 92: 702–26.

    Article  Google Scholar 

  • Laris, P. (2002). Burning the Seasonal Mosaic: Preventative Burning Strategies in the Wooded Savanna of Southern Mali, Human Ecology 30: 155–86.

    Article  Google Scholar 

  • Li, D. and Shao, J. (1994). Wavelet Theory and its Application in Image Edge Detection, International Journal of Photogrammetry and Remote Sensing 49: 4–12.

    Google Scholar 

  • Li, X. and Yeh, A. GO. (2002). Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS, International Journal of Geographical Information Systems 16: 323–43.

    Article  Google Scholar 

  • Liu, J., Ouyang, Z., Taylor, W., Groop, R., Tan, Y., and Zhang, H. (1999). A Framework for Evaluating the Effects of Human Factors on Wildlife Habitat: the Case of Giant Pandas, Conservation Biology 13: 1360–70.

    Article  Google Scholar 

  • Luhman, N. (1985). A Sociological Theory of Law. London: Routledge and KeganPaul.

    Google Scholar 

  • Malanson, G.P. (2003). Habitats, Hierarchical Acales, and Nonlinearities: An Ecological Perspective on Linking Household and Remotely Sensed Data on Land-Cover/Use Change. In Fox, J., Rindfuss, R.R., Walsh, S.J., and Mishra, V. (Eds.) Linking Household and Remotely Sensed Data: Methodological and Practical Problems, 265–83. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Malanson, G.P. (1999). Considering Complexity, Annals of the Association of American Geographer 89: 746–53.

    Article  Google Scholar 

  • Malanson, GP., Butler, D.R., and Walsh, S.J. (1990). Chaos theory in Physical Geography, Physical Geography 11: 293–304.

    Google Scholar 

  • Malanson, G.P., Butler, D.R., and Georgakakos, K.P. (1992). Nonequilibrium Geomorphic Processes and Deterministic Chaos, Geomorphology 5: 311–22.

    Article  Google Scholar 

  • Mallat, S. (1989a). A theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11: 674–93.

    Article  Google Scholar 

  • Mallat, S. (1989b). Multifrequency Channel Decompositions of Images and Wavelet Models, IEEE Transactions on Acoustics, Speech, and Signal Processing 37: 2091–2110.

    Article  Google Scholar 

  • Manson, S.M. (2001). Simplifying Complexity: A Review of Complexity Theory, Geoforum 32: 405–14.

    Article  Google Scholar 

  • Marcano-Vega, H., Aide, T.M., and Baez, D. (2002). Forest Regeneration in Abandoned Coffee Plantations and Pastures in the Cordillera Center of Puerto Rico, Plant Ecology 161: 75–87.

    Article  Google Scholar 

  • Matson, P.A., Parton, W.J., Power, A.G., and Swift, M.J. (1997). Agricultural Intensification and Ecosystem Properties, Science 277: 504–08.

    Article  Google Scholar 

  • McCracken, S.D., Brondizio, E.S., Nelson, D., Moran, E.F., Siqueira, A.D., and Rodriguez-Pedraza, C. (1999). Remote Sensing and GIS at Farm Property Level: Demography and Deforestation in the Brazilian Amazon, Photogrammetric Engineering and Remote Sensing 65: 1311–20.

    Google Scholar 

  • McGarigal, K. and Marks, B.J. (1993). Fragstats: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Corvallis, OR: Forest Science Department, Oregon State University.

    Google Scholar 

  • Mertens, B., Sunderlin, W., Ndoye, O., and Lambin, E.F. (2000). Impact of Macroeconomic Change on Deforestation in South Cameroon: Integration of Household Survey and Remotely-Sensed Data, World Development 28: 983–99.

    Article  Google Scholar 

  • Messina, J.P. and Walsh, S.J. (2001). 2.5D Morphogenesis: Modeling Landuse and Landcover Dynamics in the Ecuadorian Amazon, Plant Ecology 156: 75–88.

    Article  Google Scholar 

  • Millington, A.C, Walsh, S.J., and Osborne, P.E. (Eds.) (2001). GIS and Remote Sensing Applications in Biogeography and Ecology. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Mohanty, K.K. (1997). The Wavelet Transform for Local Image Enhancement, International Journal of Remote Sensing 18: 213–19.

    Article  Google Scholar 

  • Myers, N. (1997). Mass Extinction and Evolution, Science 278: 597–98.

    Article  Google Scholar 

  • National Research Council. (1999). Our Common Journey: A Transition Toward Sustainability. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council (2001). Grand Challenges in Environmental Sciences. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council (2002). Down to Earth: Geographic Information for Sustainable Development in Africa. Washington, DC: National Academy Press.

    Google Scholar 

  • O’Neill, R.V., Krummel, J.T., Gardner, R.H., Sugihara, G, Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H., and Graham, R.L. (1988). Indices of Landscape Pattern, Landscape Ecology 1: 153–62.

    Article  Google Scholar 

  • Pacala, S.W., Hurtt, GC., Baker, D., Peylin, P., Houghton, R.A., Birdsey, R.A., Heath, L., Sundquist, E.T., Stallard, R.F., Ciais, P., Moorcroft, P., Caspersen, J.P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M.E., Fan, S.M., Sarmiento, J.L., Goodale, C.L., Schimel, D., and Field, C.B. (2001). Consistent Land and Atmosphere-Based U.S. Carbon Sink Estimates, Science 292: 2316–20.

    Article  Google Scholar 

  • Pan, W.K.Y, Walsh, S.J., Bilsborrow, R.E., Frizzelle, B.G, Erlien, C.M., and Baquero, F.D. (in press). Farm-Level Models of Spatial Patterns of Land Use and Land Cover Dynamics in the Ecuadorian Amazon, Agriculture, Ecosystems and Environment.

    Google Scholar 

  • Parker, D. C., Berger, T., and Manson, S.M. (2002). Agent-Based Models of Land-Use and Land-Cover Change. In McConnell, W.J. (Ed.) Report and Review of an International Workshop, Irvine, CA, October, 2001, LUCC Report Series No. 6.

    Google Scholar 

  • Parker, D.C., Manson, S.M., Janssen, M.A., Hoffman, M.J., and Deadman, P. (2003). Multi-Agent Systems for the Simulation of Land Use and Land Cover Change: A Review, Annals of the Association of American Geographers 93.

    Google Scholar 

  • Pastor, J. and Broschart, M. (1990). The Spatial Pattern of a Northern Conifer-Hardwood Landscape, Landscape Ecology 4: 55–68.

    Article  Google Scholar 

  • Phillips, J.D. (1995a). Time Lags and Emergent Stability in Morphogenic/Pedogenic System Models, Ecological Modelling 78: 267–76.

    Article  Google Scholar 

  • Phillips, J.D. (1995b). Self-organization and Landscape Evolution, Progress in Physical Geography 19: 309–21.

    Article  Google Scholar 

  • Phillips, J.D. (1999a). Spatial Analysis in Physical Geography and the Challenge of Deterministic Uncertainty, Geographical Analysis 31: 359–72.

    Article  Google Scholar 

  • Pitt, D. G and Nassauer, J.I. (1992). Virtual Reality Systems and Research on the Perception, Simulation and Presentation of Environmental-Change, Landscape and Urban Planning 21: 269–71.

    Article  Google Scholar 

  • Read, J.M., Clark, D.B., Venticinque, E.M., and Moreira, M.P. (2003). Application of Merged 1-m and 4-m Resolution Satellite Data to Research and Management in Tropical Forests: An Evaluation of IKONOS Imagery, Journal of Applied Ecology 40: 592–600.

    Article  Google Scholar 

  • Read, J.M., Lam, N.S-N. (2002). Spatial Methods for Characterizing Land Cover and Detecting Land-Cover Change for the Tropics, International Journal of Remote Sensing 23: 2457–74.

    Article  Google Scholar 

  • Riitters, K.H., O’Neill, R.V., Hunsaker, C.T., Wickman, J.D., Yankee, D.H., Timmins, S.P., Jones, K.B., and Jackson, B.L. (1995). A Factor Analysis of Landscape Pattern and Structure Metrics, Landscape Ecology 10: 23–39.

    Article  Google Scholar 

  • Rindfuss, R.R., Prasartkul, P., Walsh, S.J., Entwisle, B., Sawangdee, Y., and Vogler, J.B. (2003). Household-Parcel Linkages in Nang Rong, Thailand: Challenges of Large Samples. In Fox, J. Rindfuss, R.R., Walsh, S.J. and Mishra, V. (Eds.) People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS, 131–72. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Robbins, P. (1998). Authority and Environment: Institutional Landscapes in Rajasthan, India, Annals of the Association of American Geographers 88: 410–35.

    Article  Google Scholar 

  • Rundquist, D. (2001). Field Techniques in Remote Sensing: Learning by Doing, GeoCarto International 16: 83–88.

    Article  Google Scholar 

  • Sala, O.E., Chapin, F.S.I., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., and Wall, D.H. (2000). Global Biodiversity Scenarios for the Year 2100, Science 287: 1770–74.

    Article  Google Scholar 

  • Sengupta, R.R. and Bennett, D.A. (2002). Agent-Based Modelling Environment for Spatial Decision Support, International Journal of Geographical Information Science.

    Google Scholar 

  • Seto, K.C., Kaufmann, R.K., and Woodcock, C.E. (2002). Monitoring Land Use Shange in the Pearl River Delta, China. In Walsh, S.J. and Crews-Meyer, K.A. (Eds.) Linking People, Place, and Policy: A GIScience Approach, 69–90. Boston: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Simpson, D. M. (2001). Virtual Reality and Urban Simulation in Planning: A Literature Review and Topical Bibliography, Journal of Planning Literature 15: 359–72.

    Article  Google Scholar 

  • Siu, D.Z. and Zeng, H. (2001). Modeling the Dynamics of Landscape Structure in Asia’s Emerging Desakota Regions: A Case Study in Shenzhen, Landscape and Urban Planning 53: 37–52.

    Article  Google Scholar 

  • Soares-Filho, B.S., Cerqueira, G.C., and Pennachin, C.L. (2002). DINAMICA-A Stochastic Cellular Automata Model Designed to Simulate the 1Landscape Dynamics in an Amazonian Colonization Frontier, Ecological Modelling 154: 217–35.

    Article  Google Scholar 

  • Steffen, W., Jäger, J., Carson, D., and Bradshaw, C. (Eds.) (2002). Challenges of a Changing Earth: Proceedings of the Global Change Open Science Conference, Amsterdam. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Stephenne, N. and Lambin, E.F. (2001). A Dynamic Simulation Model of Land-Use Changes in Sudano-Sahelian Countries of Africa (SALU), Agriculture, Ecosystems, and Environment 85: 145–61.

    Article  Google Scholar 

  • Tucker, C.J. and Sellers, P.J. (1986). Satellite Remote Sensing of Primary Production, International Journal of Remote Sensing 7: 1395–1416.

    Article  Google Scholar 

  • Tucker, C.J. and Townshend, J.R.G. (2000). Strategies for MonitoringTropical Deforestation Using Satellite Data, International Journal of Remote Sensing 21: 1461–71.

    Article  Google Scholar 

  • Turner, M.D. (1999). Merging Local and Regional Analyses of Land-Use Change: The Case of Livestock in the Sahel, Annals of the Association of American Geographers 89: 191–219.

    Article  Google Scholar 

  • Turner, M.G. (1990a). Landscape Changes in Nine Rural Counties in Georgia, Photogrammetric Engineering and Remote Sensing 56: 379–86.

    Google Scholar 

  • Turner, M.G (1990b). Spatial and Temporal Analysis of Landscape Patterns, Landscape Ecology 4: 21–30.

    Article  Google Scholar 

  • Turner, B.L. II. (1994). Local Faces, Global Flows: The Role of Land-Use/Cover in Global Environmental Change, Land Degradation and Society 5: 71–78.

    Article  Google Scholar 

  • Turner, B.L. II. (2002). Toward Integrated Land-Change Science: Advances in 1.5 Decades of Sustained International Research on Land-Use and Land-Cover Change. In Steffan, W., Jäger, J., Carson, D., and Bradshaw, C. (Eds.) Challenges of a Changing Earth: Proceedings of the Global Change Open Science Conference, Amsterdam. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Turner, B.L. II. and Ali, A.M.S. (1996). Induced Intensification: Agricultural Change in Bangladesh with Implications for Malthus and Boserup, Proceedings, National Academy of Sciences 93: 14984–91.

    Article  Google Scholar 

  • Turner B.L. II, Geoghegan, J. and Foster, D.R. (2003). Integrated Land-Change Science and Tropical Deforestation in the Southern Yucatan: Final Frontiers. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Turner, B.L. II and Geoghegan, J. (2003). Land-Cover and Land-Use Change (LCLUC) in the Southern Yucatan Peninsular Region (SYPR): An Integrated Approach. In Fox, J., Rindfuss, R.R., Walsh, S.J., and Mishra, V. (Eds.) People and the Environment: Approaches for Linking Household and Community Surveys to Remote Sensing and GIS, 31–60. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Ullah, A., Rundquist, D., and Derry, D. (2000). Characterizing Spectral Signatures for Three Selected Emergent Macrophytes: A Controlled Experiment, GeoCarto International 15: 29–39.

    Article  Google Scholar 

  • Veldkamp, A. and Fresco, L.O. (1996). CLUE: A Conceptual Model to Study the Conversion of Land Use and its Effects, Ecological Modelling 85: 253–70.

    Article  Google Scholar 

  • Veldkamp, A. and Lambin, E.F. (2001). Predicting Land-Use Change, Agriculture, Ecosystems, and Environment 85: 1–6.

    Article  Google Scholar 

  • Verburg, P.H., de Koning, G.H.J., Kok, K., Veldkamp, A., and Bouma, J. (1999). A Spatial Explicit Allocation Procedure for Modeling the Pattern of Land Use Change Based Upon Actual Land Use, Ecological Modelling 116: 45–61.

    Article  Google Scholar 

  • Vitousek, P.M., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G., Aber, J.D., Howarth, R.W., and Likens, GE. (1997). Human Alteration of the Global Nitrogen Cycle: Sources and Consequences, Ecological Applications 7: 737–50.

    Google Scholar 

  • Walsh, S.J., Bian, L., McKnight, S., Brown, D.G, and Hammer, E.S. (2003a). Solifluction Steps and Risers, Lee Ridge, Glacier National Park, Montana, USA: A Scale and Pattern Analysis, Geomorphology 1399: 1–18.

    Google Scholar 

  • Walsh, S.J., Bilsborrow, R.E., McGregor, S.J., Frizzelle, B.G, Messina, J.P., Pan, W.K.T., Crews-Meyer, K.A., Taff, G.N., and Baquero, F.D. (2003b). Integration of Longitudinal Surveys, Remote Sensing Time-Series, and Spatial Analyses: Approaches for Linking

    Google Scholar 

  • People and Place. In Fox, J. Rindfuss, R.R., Walsh, S.J., and Mishra, V. (Eds.) Linking Household and Remotely Sensed Data: Methodological and Practical Problems, 91–130. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Walsh, S.J., Butler, D.R., and Malanson, GP. (1998). An Overview of Scale, Pattern, and Process Relationships in Geomorphology: A Remote Sensing and GIS Perspective, Geomorphology 21: 183–205.

    Article  Google Scholar 

  • Walsh, S.J., Crews-Meyer, K.A., Crawford, T.W., Welsh, W.F., Entwisle, B., and Rindfuss, R.R. (2001). Patterns of Change in Land-Use and Land-Cover and Plant Biomass: Separating Intra- and Inter-Annual Signals in Monsoon-Driver Northeast Thailand. In Millington, A.C., Walsh, S.J., and Osborne, P.E. (Eds.) GIS and Remote Sensing Applications in Biogeography and Ecology, 91–108. Boston: KluwerAcademic Publishers.

    Chapter  Google Scholar 

  • Walsh, S.J. and Crews-Meyer, K.A. (Eds.) (2002). Linking People, Place, and Policy: A GIScience Approach. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Walsh, S.J., Welsh, W.F., Evans, T.P., Entwisle, B., and Rindfuss, R.R. (1999). Scale Dependent Relationships Between Population and Environment in Northeastern Thailand, Photogrammetric Engineering and Remote Sensing 65: 97–105.

    Google Scholar 

  • Watson, R. T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., and Dokken, D.J. (Eds.) (2000). Land Use, Land-Use Change and Forestry. Special Report of the IPCC (Intergovernmental Panel of Climate Change). Cambridge: Cambridge University Press.

    Google Scholar 

  • White, R. and Engelen, G (1997). Cellular Automata as the Basis of Integrated Dynamic Regional Modeling, Environment and Planning B: Planning and Design 24: 235–46.

    Google Scholar 

  • Wolfram, S. (1984). Cellular Automata as Models of Complexity, Nature 311: 419–24.

    Article  Google Scholar 

  • Wood, C.H. and Skole, D. (1998). Linking Satellite, Census, and Survey Data to Study Deforestation in the Brazilian Amazon. In Liverman, D., Moran, E.F., Rindfuss, R.R., and Stern, P.C. (Eds.) People and Pixels: Linking Remote Sensing and Social Science: 70–93. Washington. DC: National Academy Press.

    Google Scholar 

  • Wu, F. (1998). Simulating Urban Encroachment on Rural Land with Fuzzy-Logic-Controlled Cellular Automata in a GIS, Journal of Environmental Management 53: 293–308.

    Article  Google Scholar 

  • Yocky, D.A. (1996). Multiresolution Wavelet Decomposition Image Merger of Landsat Thematic Mapper and SPOT Panchromatic Data, Photogrammetric Engineering and Remote Sensing 62: 1067–74.

    Google Scholar 

  • Zhan, X., De Fries, Townshend, J.R.G, DiMieeli, C., Hansen, M., Huang, C., and Sohlberg, R. (2000). The 250m Global Land Cover Change Product from the Moderate Resolution Imaging Spectroradiometer of NASA’s Earth Observing System, International Journal of Remote Sensing 21: 1433–60.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walsh, S.J., Evans, T.P., Turner, B.L. (2004). Population-Environment Interactions with an Emphasis on Land-Use/Land-Cover Dynamics and the Role of Technology. In: Brunn, S.D., Cutter, S.L., Harrington, J.W. (eds) Geography and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2353-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2353-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1871-8

  • Online ISBN: 978-1-4020-2353-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics