Skip to main content

Engineering of SH2 Domains for the Recognition of Protein Tyrosine O-Sulfation Sites

  • Protocol
  • First Online:
SH2 Domains

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2705))

Abstract

Protein engineering has brought advances to industrial processes, biomaterials, nanotechnology, biosensors, and biomedical applications. This chapter will focus on the engineering of Src Homology 2 domains (SH2) to act as an antibody mimetic for the recognition of sulfotyrosine-containing peptides or proteins. In comparison to anti-sulfotyrosine antibodies, SH2 mutants have much smaller size and can be heterologously expressed and purified in large quantity at low cost. This chapter will describe the use of phage display to identify a sulfotyrosine-binding SH2 mutant and the subsequent enrichment of sulfotyrosine-containing peptides in complex biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71(3):359–362. https://doi.org/10.1016/0092-8674(92)90504-6

    Article  CAS  PubMed  Google Scholar 

  2. Anderson D, Koch CA, Grey L et al (1990) Binding of SH2 domains of phospholipase Cγ1, GAP, and Src to activated growth factor receptors. Science 250(4983):979–982. https://doi.org/10.1126/science.2173144

    Article  CAS  PubMed  Google Scholar 

  3. Moran MF, Koch CA, Anderson D et al (1990) Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci U S A 87(21):8622–8626. https://doi.org/10.1073/pnas.87.21.8622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Filippakopoulos P, Mueller S, Knapp S (2009) SH2 domains: modulators of nonreceptor tyrosine kinase activity. Curr Opin Struct Biol 19(6):643–649. https://doi.org/10.1016/j.sbi.2009.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagner MJ, Stacey MM, Liu BA et al (2013) Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 5(12):a008987/008981–a008987/008919. https://doi.org/10.1101/cshperspect.a008987

    Article  CAS  Google Scholar 

  6. Machida K, Mayer BJ (2005) The SH2 domain: versatile signaling module and pharmaceutical target. Biochim Biophys Acta, Proteins Proteomics 1747(1):1–25. https://doi.org/10.1016/j.bbapap.2004.10.005

    Article  CAS  Google Scholar 

  7. Waksman G, Kumaran S, Lubman O (2004) SH2 domains: role, structure and implications for molecular medicine. Expert Rev Mol Med 6(3):1–18

    Article  PubMed  Google Scholar 

  8. Songyang Z, Shoelson SE, Chaudhuri M et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72(5):767–778

    Article  CAS  PubMed  Google Scholar 

  9. Kaneko T, Huang H, Cao X et al (2012) Superbinder SH2 domains act as antagonists of cell signaling. Sci Signal 5(243):ra68. https://doi.org/10.1126/scisignal.2003021

    Article  CAS  PubMed  Google Scholar 

  10. Ju T, Niu W, Cerny R et al (2013) Molecular recognition of sulfotyrosine and phosphotyrosine by the Src homology 2 domain. Mol Biosyst 9(7):1829–1832. https://doi.org/10.1039/c3mb70061e

    Article  CAS  PubMed  Google Scholar 

  11. Lawrie J, Waldrop S, Morozov A et al (2021) Engineering of a small protein scaffold to recognize sulfotyrosine with high specificity. ACS Chem Biol 16(8):1508–1517. https://doi.org/10.1021/acschembio.1c00382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee RWH, Huttner WB (1983) Tyrosine-O-sulfated proteins of PC12 pheochromocytoma cells and their sulfation by a tyrosylprotein sulfotransferase. J Biol Chem 258(18):11326–11334

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka S, Nishiyori T, Kojo H et al (2017) Structural basis for the broad substrate specificity of the human tyrosylprotein sulfotransferase-1. Sci Rep 7(1):8776–8776. https://doi.org/10.1038/s41598-017-07141-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teramoto T, Fujikawa Y, Kawaguchi Y et al (2013) Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction. Nat Commun 4:1572–1579. https://doi.org/10.1038/ncomms2593

    Article  CAS  PubMed  Google Scholar 

  15. Sherry DM, Murray AR, Kanan Y et al (2010) Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy. Eur J Neurosci 32:1461–1472. https://doi.org/10.1111/j.1460-9568.2010.07431.x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Farzan M, Mirzabekov T, Kolchinsky P et al (1999) Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96(5):667–676. https://doi.org/10.1016/S0092-8674(00)80577-2

    Article  CAS  PubMed  Google Scholar 

  17. Sasha Tait A, Dong JF, López JA et al (2002) Site-directed mutagenesis of platelet glycoprotein Ibα demonstrating residues involved in the sulfation of tyrosines 276, 278, and 279. Blood 99:4422–4427. https://doi.org/10.1182/blood.V99.12.4422

    Article  PubMed  Google Scholar 

  18. Kanan Y, Siefert JC, Kinter M et al (2014) Complement factor H, vitronectin, and opticin are tyrosine-sulfated proteins of the retinal pigment epithelium. PLoS One 9:e105409. https://doi.org/10.1371/journal.pone.0105409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Choe H, Bota D et al (2003) Sulfation of tyrosine 174 in the human C3a receptor is essential for binding of C3a anaphylatoxin. J Biol Chem 278:37902–37908. https://doi.org/10.1074/jbc.M306061200

    Article  CAS  PubMed  Google Scholar 

  20. Jiang X, Liu H, Chen X et al (2012) Structure of follicle-stimulating hormone in complex with the entire ectodomain of its receptor. Proc Natl Acad Sci U S A 109:12491–12496. https://doi.org/10.1073/pnas.1206643109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moore KL (2003) The biology and enzymology of protein tyrosine O-sulfation. J Biol Chem 278:24243–24246. https://doi.org/10.1074/jbc.R300008200

    Article  CAS  PubMed  Google Scholar 

  22. Seibert C, Sakmar TP (2008) Toward a framework for sulfoproteomics: synthesis and characterization of sulfotyrosine-containing peptides. Biopolymers 90(3):459–477. https://doi.org/10.1002/bip.20821

    Article  CAS  PubMed  Google Scholar 

  23. Baeuerle PA, Huttner WB (1987) Tyrosine sulfation is a trans-Golgi-specific protein modification. J Cell Biol 105:2655–2664. https://doi.org/10.1083/jcb.105.6.2655

    Article  CAS  PubMed  Google Scholar 

  24. Hoffhines AJ, Damoc E, Bridges KG et al (2006) Detection and purification of tyrosine-sulfated proteins using a novel anti-sulfotyrosine monoclonal antibody. J Biol Chem 281:37877–37887. https://doi.org/10.1074/jbc.M609398200

    Article  CAS  PubMed  Google Scholar 

  25. Robinson MR, Moore KL, Brodbelt JS (2014) Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. J Am Soc Mass Spectrom 25:1461–1471. https://doi.org/10.1007/s13361-014-0910-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balderrama GD, Meneses EP, Orihuela LH et al (2011) Analysis of sulfated peptides from the skin secretion of the Pachymedusa dacnicolor frog using IMAC-Ga enrichment and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 25:1017–1027. https://doi.org/10.1002/rcm.4950

    Article  CAS  Google Scholar 

  27. Monigatti F, Hekking B, Steen H (2006) Protein sulfation analysis-a primer. Biochim Biophys Acta 1764. https://doi.org/10.1016/j.bbapap.2006.07.002

  28. Önnerfjord P, Heathfield TF, Heinegård D (2004) Identification of tyrosine sulfation in extracellular leucine-rich repeat proteins using mass spectrometry. J Biol Chem 279:26–33. https://doi.org/10.1074/jbc.M308689200

    Article  CAS  PubMed  Google Scholar 

  29. Ward CM, Andrews RK, Smith AI et al (1996) Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibalpha. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibalpha as a binding site for von Willebr. Biochemistry 35:4929–4938. https://doi.org/10.1021/bi952456c

    Article  CAS  PubMed  Google Scholar 

  30. Yu Y, Hoffhines AJ, Moore KL et al (2007) Determination of the sites of tyrosine O-sulfation in peptides and proteins. Nat Methods 4:583–588. https://doi.org/10.1038/nmeth1056

    Article  CAS  PubMed  Google Scholar 

  31. Shinde S, Bunschoten A, Kruijtzer JAW et al (2012) Imprinted polymers displaying high affinity for sulfated protein fragments. Angew Chem Int Ed 51(33):8326–8329. https://doi.org/10.1002/anie.201201314

    Article  CAS  Google Scholar 

  32. Robinson MR, Brodbelt JS (2016) Integrating weak anion exchange and ultraviolet photodissociation mass spectrometry with strategic modulation of peptide basicity for the enrichment of sulfopeptides. Anal Chem 88(22):11037–11045

    Article  CAS  PubMed  Google Scholar 

  33. Kehoe JW, Velappan N, Walbolt M et al (2006) Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 5(12):2350–2363. https://doi.org/10.1074/mcp.M600314-MCP200

    Article  CAS  PubMed  Google Scholar 

  34. Ju T, Niu W, Guo J (2016) Evolution of Src homology 2 (SH2) domain to recognize sulfotyrosine. ACS Chem Biol 11(9):2551–2557. https://doi.org/10.1021/acschembio.6b00555

    Article  CAS  PubMed  Google Scholar 

  35. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16(7):379–394. https://doi.org/10.1038/nrg3927

    Article  CAS  PubMed  Google Scholar 

  36. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  CAS  PubMed  Google Scholar 

  37. Spriestersbach A, Kubicek J, Schaefer F et al (2015) Purification of His-tagged proteins. Methods Enzymol 559:1–15. https://doi.org/10.1016/bs.mie.2014.11.003. Laboratory methods in enzymology: protein, part D.

    Article  CAS  PubMed  Google Scholar 

  38. Lynch BA, Loiacono KA, Tiong CL et al (1997) A fluorescence polarization based src-SH2 binding assay. Anal Biochem 247(1):77–82. https://doi.org/10.1006/abio.1997.2042

    Article  CAS  PubMed  Google Scholar 

  39. Rossi AM, Taylor CW (2011) Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 6(3):365–387. https://doi.org/10.1038/nprot.2011.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of Health (grant 1R01GM138623 and 1R01GM147785 to J.G. and W.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiantao Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waldrop, S.P., Niu, W., Guo, J. (2023). Engineering of SH2 Domains for the Recognition of Protein Tyrosine O-Sulfation Sites. In: Carlomagno, T., Köhn, M. (eds) SH2 Domains. Methods in Molecular Biology, vol 2705. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3393-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3393-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3392-2

  • Online ISBN: 978-1-0716-3393-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics