Skip to main content

Unfolding and Refolding Proteins Using Single-Molecule AFM

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

  • 834 Accesses

Abstract

Single-molecule atomic force microscopy (AFM) allows capturing the conformational dynamics of an individual molecule under force. In this chapter, we describe a protocol for conducting a protein nanomechanical experiment using AFM, covering both the force-extension and force-clamp modes. Combined, these experiments provide an integrated vista of the molecular mechanisms—and their associated kinetics—underpinning the mechanical unfolding and refolding of individual proteins when exposed to mechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    Article  Google Scholar 

  2. Infante E, Stannard A, Board SJ et al (2019) The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nat Phys 15:973–981

    Article  Google Scholar 

  3. del Rio A, Perez-Jimenez R, Liu R et al (2009) Stretching single Talin rod molecules activates vinculin binding. Science 323:638–641

    Article  ADS  Google Scholar 

  4. Javadi Y, Fernandez JM, Perez-Jimenez R (2013) Protein folding under mechanical forces: a physiological view. Physiology 28:9–17

    Google Scholar 

  5. Eckels EC, Haldar S, Tapia-Rojo R et al (2019) The mechanical power of titin folding. Cell Rep 27:1836–1847.e4

    Article  Google Scholar 

  6. Kaiser CM, Goldman DH, Chodera JD et al (2011) The ribosome modulates nascent protein folding. Science 334:1723–1727

    Google Scholar 

  7. Goldman DH, Kaiser CM, Milin A et al (2015) Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348:457–460

    Google Scholar 

  8. Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587–612

    Article  Google Scholar 

  9. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  ADS  Google Scholar 

  10. Mora M, Stannard A, Garcia-Manyes S (2020) The nanomechanics of individual proteins. Chem Soc Rev 49:6816–6832

    Article  Google Scholar 

  11. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  Google Scholar 

  12. Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  Google Scholar 

  13. Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678

    Article  ADS  Google Scholar 

  14. Wiita AP, Perez-Jimenez R, Walther KA et al (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127

    Article  ADS  Google Scholar 

  15. Dietz H, Rief M (2004) Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci U S A 101:16192–16197

    Article  ADS  Google Scholar 

  16. Perales-Calvo J, Giganti D, Stirnemann G et al (2018) The force-dependent mechanism of DnaK-mediated mechanical folding. Sci Adv 4:eaaq0243

    Article  ADS  Google Scholar 

  17. Milles LF, Schulten K, Gaub HE et al (2018) Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 359:1527–1533

    Article  ADS  Google Scholar 

  18. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  19. Ott W, Jobst MA, Schoeler C et al (2017) Single-molecule force spectroscopy on polyproteins and receptor–ligand complexes: the current toolbox. J Struct Biol 197:3–12

    Article  Google Scholar 

  20. Popa I, Berkovich R, Alegre-Cebollada J et al (2013) Nanomechanics of HaloTag tethers. J Am Chem Soc 135:12762–12771

    Article  Google Scholar 

  21. Xue Y, Li X, Li H et al (2014) Quantifying thiol-gold interactions towards the efficient strength control. Nat Commun 5:4348

    Google Scholar 

  22. Popa I, Kosuri P, Alegre-Cebollada J et al (2013) Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat Protoc 8:1261–1276

    Article  Google Scholar 

Download references

Acknowledgments

R.T-R. is recipient of a King’s Prize Fellowship. This work is supported by the European Commission (Mechanocontrol, Grant Agreement 731957), BBSRC sLoLa (B/V003518/1), Leverhulme Trust Research Leadership Award (RL 2016-015), Wellcome Trust Investigator Award (212218/Z/18/Z), and Royal Society Wolfson Fellowship (RSWF/R3/183006) all to S.G.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Garcia-Manyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mora, M., Tapia-Rojo, R., Garcia-Manyes, S. (2024). Unfolding and Refolding Proteins Using Single-Molecule AFM. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics