Skip to main content

Characterizing the Repair of DNA Double-Strand Breaks: A Review of Surrogate Plasmid-Based Reporter Methods

  • Protocol
  • First Online:
Base Excision Repair Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2701))

  • 571 Accesses

Abstract

DNA double-strand breaks (DSBs) are the most lethal genomic lesions that are induced endogenously during physiological reactions as well as by external stimuli and genotoxicants. DSBs are repaired in mammalian cells via one of three well-studied pathways depending on the cell cycle status and/or the nature of the break. First, the homologous recombination (HR) pathway utilizes the duplicated sister chromatid as a template in S/G2 cells. Second, the nonhomologous end-joining (NHEJ) is the predominant DSB repair pathway throughout the cell cycle. The third pathway, microhomology-mediated/alternative end-joining (MMEJ/Alt-EJ), is a specialized backup pathway that works not only in the S phase but also in G0/G1 cells that constitute the bulk of human tissues. In vitro experimental methods to recapitulate the repair of physiologically relevant DSBs pose a challenge. Commonly employed plasmid- or oligonucleotide-based substrates contain restriction enzyme-cleaved DSB mimics, which undoubtedly do not mimic DSB ends generated by ionizing radiation (IR), chemotherapeutics, and reactive oxygen species (ROS). DSBs can also be indirectly generated by reactive oxygen species (ROS). All such DSBs invariably contain blocked termini. In this methodology chapter, we describe a method to recapitulate the DSB repair mechanism using in cellulo and in vitro cell-free systems. This methodology enables researchers to assess the contribution of NHEJ vs. Alt-EJ using a reporter plasmid containing DSB lesions with non-ligatable termini. Limitations and challenges of prevailing methods are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis AJ, Chen DJ (2013) DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2(3):130–143. https://doi.org/10.3978/j.issn.2218-676X.2013.04.02

    Article  CAS  PubMed  Google Scholar 

  2. Decottignies A (2013) Alternative end-joining mechanisms: a historical perspective. Front Genet 4:48. https://doi.org/10.3389/fgene.2013.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455. https://doi.org/10.1146/annurev-genet-110711-155540

    Article  CAS  PubMed  Google Scholar 

  4. Pfeiffer P, Vielmetter W (1988) Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res 16(3):907–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. North P, Ganesh A, Thacker J (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res 18(21):6205–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pastwa E, Somiari RI, Malinowski M, Somiari SB, Winters TA (2009) In vitro non-homologous DNA end joining assays – the 20th anniversary. Int J Biochem Cell Biol 41(6):1254–1260. https://doi.org/10.1016/j.biocel.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  7. Fairman MP, Johnson AP, Thacker J (1992) Multiple components are involved in the efficient joining of double stranded DNA breaks in human cell extracts. Nucleic Acids Res 20(16):4145–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iliakis G, Mladenov E, Cheong N (2012) In vitro rejoining of double strand breaks in genomic DNA. Methods Mol Biol 920:471–484. https://doi.org/10.1007/978-1-61779-998-3_32

    Article  CAS  PubMed  Google Scholar 

  9. Budman J, Chu G (2005) Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 24(4):849–860. https://doi.org/10.1038/sj.emboj.7600563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma Y, Lieber MR (2006) In vitro nonhomologous DNA end joining system. Methods Enzymol 408:502–510. https://doi.org/10.1016/S0076-6879(06)08031-1

    Article  CAS  PubMed  Google Scholar 

  11. Gu XY, Bennett RA, Povirk LF (1996) End-joining of free radical-mediated DNA double-strand breaks in vitro is blocked by the kinase inhibitor wortmannin at a step preceding removal of damaged 3′ termini. J Biol Chem 271(33):19660–19663

    Article  CAS  PubMed  Google Scholar 

  12. Datta K, Purkayastha S, Neumann RD, Winters TA (2012) An in vitro DNA double-strand break repair assay based on end-joining of defined duplex oligonucleotides. Methods Mol Biol 920:485–500. https://doi.org/10.1007/978-1-61779-998-3_33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellaiche Y, Mogila V, Perrimon N (1999) I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in drosophila. Genetics 152(3):1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yatagai F, Suzuki M, Ishioka N, Ohmori H, Honma M (2008) Repair of I-SceI induced DSB at a specific site of chromosome in human cells: influence of low-dose, low-dose-rate gamma-rays. Radiat Environ Biophys 47(4):439–444. https://doi.org/10.1007/s00411-008-0179-7

    Article  CAS  PubMed  Google Scholar 

  15. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3):196–207. https://doi.org/10.1038/nrm2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bindra RS, Goglia AG, Jasin M, Powell SN (2013) Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucleic Acids Res 41(11):e115. https://doi.org/10.1093/nar/gkt255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kostyrko K, Mermod N (2015) Assays for DNA double-strand break repair by microhomology-based end-joining repair mechanisms. Nucleic Acids Res 44:e56. https://doi.org/10.1093/nar/gkv1349

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dutta A, Eckelmann B, Adhikari S, Ahmed KM, Sengupta S et al (2017) Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res 45(5):2585–2599. https://doi.org/10.1093/nar/gkw1262

    Article  CAS  PubMed  Google Scholar 

  19. Nagel ZD, Margulies CM, Chaim IA, McRee SK, Mazzucato P et al (2014) Multiplexed DNA repair assays for multiple lesions and multiple doses via transcription inhibition and transcriptional mutagenesis. Proc Natl Acad Sci U S A 111(18):E1823–E1832. https://doi.org/10.1073/pnas.1401182111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hawkins JA, Jones SK Jr, Finkelstein IJ, Press WH (2018) Indel-correcting DNA barcodes for high-throughput sequencing. Proc Natl Acad Sci U S A 115(27):E6217–E6226. https://doi.org/10.1073/pnas.1802640115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is supported by grants from the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute of Aging (NIA) of the National Institutes of Health (NIH) under award numbers R01NS088645, RF1NS112719, R03AG064266, and R01NS094535 and the Houston Methodist Research Institute’s internal funds. M.L.H. thanks Everett E. and Randee K. Bernal for their support via the Centenial Endowed Directorship of DNA Repair. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. The authors thank Dr. Gillian Hamilton at Houston Methodist Research Institute (Houston, TX) for her assistance with editing the document.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arijit Dutta or Muralidhar L. Hegde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dutta, A., Mitra, J., Hegde, P.M., Mitra, S., Hegde, M.L. (2023). Characterizing the Repair of DNA Double-Strand Breaks: A Review of Surrogate Plasmid-Based Reporter Methods. In: Bhakat, K.K., Hazra, T.K. (eds) Base Excision Repair Pathway. Methods in Molecular Biology, vol 2701. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3373-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3373-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3372-4

  • Online ISBN: 978-1-0716-3373-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics