Skip to main content

Building High-Confidence Gene Regulatory Networks by Integrating Validated TF–Target Gene Interactions Using ConnecTF

  • Protocol
  • First Online:
Plant Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2698))

  • 837 Accesses

Abstract

Many methods are now available to identify or predict the target genes of transcription factors (TFs) in plants. These include experimental approaches such as in vivo or in vitro TF-target gene-binding assays and various methods for identifying regulated targets in mutants, transgenics, or isolated plant cells. In addition, computational approaches are used to infer TF-target gene interactions from the regulatory elements or gene expression changes across treatments. While each of these approaches has now been applied to a large number of TFs from many species, each method has its own limitations which necessitates that multiple data types are integrated to build the most accurate representation of the gene regulatory networks operating in plants. To make the analyses of TF-target interaction datasets available to the broader research community, we have developed the ConnecTF web platform (https://connectf.org/). In this chapter, we describe how ConnecTF can be used to integrate validated and predicted TF-target gene interactions in order to dissect the regulatory role of TFs in developmental and stress response pathways. Using as our examples KN1 and RA1, two well-characterized maize TFs involved in developing floral tissue, we demonstrate how ConnecTF can be used to (1) compare the target genes between TFs, (2) identify direct vs. indirect targets by combining TF-binding and TF-regulation datasets, (3) chart and visualize network paths between TFs and their downstream targets, and (4) prune inferred user networks for high-confidence predicted interactions using validated TF-target gene data. Finally, we provide instructions for setting up a private version of ConnecTF that enables research groups to store and analyze their own TF-target gene interaction datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varala K, Marshall-Colón A, Cirrone J et al (2018) Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc Natl Acad Sci 115:6494–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shinozaki Y, Nicolas P, Fernandez-Pozo N et al (2018) High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nat Commun 9:364

    Article  PubMed  PubMed Central  Google Scholar 

  3. Contreras-López O, Vidal EA, Riveras E et al (2022) Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate. Proc Natl Acad Sci U S A 119:e2107879119. https://doi.org/10.1073/pnas.2107879119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ouma WZ, Pogacar K, Grotewold E (2018) Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties. PLoS Comput Biol 14:e1006098

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Malley RC, Huang S-SC, Song L et al (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alvarez JM, Schinke A-L, Brooks MD et al (2020) Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat Commun 11:1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greil F, Moorman C, van Steensel B (2006) DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol 410:342–359

    Article  CAS  PubMed  Google Scholar 

  8. Tian F, Yang D-C, Meng Y-Q et al (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48:D1104–D1113

    CAS  PubMed  Google Scholar 

  9. Vandepoele K, Quimbaya M, Casneuf T et al (2009) Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 150:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Margolin AA, Nemenman I, Basso K et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf 7(Suppl 1):S7

    Article  Google Scholar 

  11. Huynh-Thu VA, Irrthum A, Wehenkel L, Geurts P (2010) Inferring regulatory networks from expression data using tree-based methods. PLoS One 5:e12776. https://doi.org/10.1371/journal.pone.0012776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cirrone J, Brooks MD, Bonneau R et al (2020) OutPredict: multiple datasets can improve prediction of expression and inference of causality. Sci Rep 10:6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kulkarni SR, Jones DM, Vandepoele K (2019) Enhanced maps of transcription factor binding sites improve regulatory networks learned from accessible chromatin data. Plant Physiol 181:412–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brooks MD, Juang C-L, Katari MS et al (2021) ConnecTF: A platform to integrate transcription factor–gene interactions and validate regulatory networks. Plant Physiol 185:49–66

    Article  CAS  PubMed  Google Scholar 

  15. De Clercq I, Van de Velde J, Luo X et al (2021) Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nat Plants 7:500–513

    Article  PubMed  Google Scholar 

  16. Chen D, Kaufmann K (2017) Integration of genome-wide TF binding and gene expression data to characterize gene regulatory networks in plant development. In: Kaufmann K, Mueller-Roeber B (eds) Plant gene regulatory networks: methods and protocols. Springer New York, New York, pp 239–269

    Chapter  Google Scholar 

  17. Huang J, Zheng J, Yuan H, McGinnis K (2018) Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize. BMC Plant Biol 18:111

    Article  PubMed  PubMed Central  Google Scholar 

  18. Eveland AL, Goldshmidt A, Pautler M et al (2014) Regulatory modules controlling maize inflorescence architecture. Genome Res 24:431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolduc N, Yilmaz A, Mejia-Guerra MK et al (2012) Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 26:1685–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Swift J, Coruzzi GM (2017) A matter of time – how transient transcription factor interactions create dynamic gene regulatory networks. Biochim Biophys Acta Gene Regul Mech 1860:75–83

    Article  CAS  PubMed  Google Scholar 

  21. MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ (2011) Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 27:141–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Para A, Li Y, Marshall-Colón A et al (2014) Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proc Natl Acad Sci U S A 111:10371–10376

    Google Scholar 

  23. Zeller KI, Zhao X, Lee CWH et al (2006) Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci U S A 103:17834–17839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brooks MD, Cirrone J, Pasquino AV et al (2019) Network walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat Commun 10:1–13

    Article  CAS  Google Scholar 

  25. Tu X, Mejía-Guerra MK, Valdes Franco JA et al (2020) Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun 11:5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reich M, Liefeld T, Gould J et al (2006) GenePattern 2.0. Nat Genet 38:500–501

    Article  CAS  PubMed  Google Scholar 

  27. Marbach D, Costello JC, Küffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pratapa A, Jalihal AP, Law JN et al (2020) Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat Methods 17:147–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is funded by NIH-NIGMS R01 GM121753 to G.M.C., NSF Plant Genome grant NSF-PGRP: IOS-1840761 to G.M.C., and the Zegar Family Foundation A16-0051 to G.M.C. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the US Department of Agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Brooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, J., Katari, M.S., Juang, CL., Coruzzi, G.M., Brooks, M.D. (2023). Building High-Confidence Gene Regulatory Networks by Integrating Validated TF–Target Gene Interactions Using ConnecTF. In: Kaufmann, K., Vandepoele, K. (eds) Plant Gene Regulatory Networks. Methods in Molecular Biology, vol 2698. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3354-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3354-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3353-3

  • Online ISBN: 978-1-0716-3354-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics