Skip to main content

Misexpression Approaches for the Manipulation of Flower Development

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2686))

  • 759 Accesses

Abstract

The generation of dominant gain-of-function mutants through activation tagging is a forward genetic approach that can be applied to study the mechanisms of flower development, complementing the screening of loss-of-function mutants. In addition, the functions of genes of interest can be further analyzed through reverse genetics. A commonly used method is gene overexpression, where ectopic expression can result in an opposite phenotype to that caused by a loss-of-function mutation. When overexpression is detrimental, the misexpression of a gene using tissue-specific promoters can be useful to study spatial-specific function. As flower development is a multistep process, it can be advantageous to control gene expression, or its protein product activity, in a temporal and/or spatial manner. This has been made possible through several inducible promoter systems as well as inducible proteins by constructing chimeric fusions between the ligand-binding domain of the glucocorticoid receptor (GR) and the protein of interest. The recently introduced CRISPR-Cas9-based platform provides a new way of bioengineering transcriptional regulators in plants. By fusing a catalytically inactive dCas9 with functional activation or repression domains, the CRISPR-Cas9 module can achieve transcriptional activation or repression of endogenous genes. All these methods allow us to genetically manipulate gene expression during flower development. In this chapter, we describe methods to produce the expression constructs, method of screening, and more general applications of the techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walden R, Fritze K, Hayashi H et al (1994) Activation tagging: a means of isolating genes implicated as playing a role in plant growth and development. Plant Mol Biol 26:1521–1528

    Article  CAS  PubMed  Google Scholar 

  2. Weigel D, Ahn JH, Blázquez MA et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ito T, Meyerowitz EM (2000) Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12:1541–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131

    Article  CAS  PubMed  Google Scholar 

  5. Wilkinson JE, Twell D, Lindsey K (1997) Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48:265–275

    Article  CAS  Google Scholar 

  6. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683

    Article  CAS  PubMed  Google Scholar 

  7. Goldshmidt A, Alvarez JP, Bowman JL et al (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore I, Galweiler L, Grosskopf D et al (1998) A transcription activation system for regulated gene expression in transgenic plants. Proc Natl Acad Sci U S A 95:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baroux C, Blanvillain R, Betts H et al (2005) Predictable activation of tissue-specific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotechnol J 3:91–101

    Article  CAS  PubMed  Google Scholar 

  10. Lloyd AM, Schena M, Walbot V et al (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266:436–439

    Article  CAS  PubMed  Google Scholar 

  11. Earley KW, Haag JR, Pontes O et al (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  12. Knop M, Siegers K, Pereira G et al (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972

    Article  CAS  PubMed  Google Scholar 

  13. Craft J, Samalova M, Baroux C et al (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  CAS  PubMed  Google Scholar 

  14. Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  CAS  PubMed  Google Scholar 

  15. Zuo J, Niu QW, Chua NH (2000) Technical advance: an estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

  16. Roslan HA, Salter MG, Wood CD et al (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 28:225–235

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Wu S, Xu J (2017) Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B 7:292–302

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  PubMed  Google Scholar 

  19. Durai S, Mani M, Kandavelou K et al (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cermak T, Doyle EL, Christian M et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li T, Huang S, Zhao X et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morbitzer R, Elsaesser J, Hausner J et al (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lowder LG, Zhang D, Baltes N et al (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lowder LG, Zhou J, Zhang Y et al (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-act systems. Mol Plant 11:245–256

    Article  CAS  PubMed  Google Scholar 

  25. Gardiner J, Ghoshal B, Wang M et al (2022) CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. Plant Physiol 188:1811–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubois A, Roudier F (2021) Deciphering plant chromatin regulation via CRISPR/dCas9-based epigenome engineering. Epigenomes 5:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Green MR, Sambrook J (eds) (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  28. Fang RX, Nagy F, Sivasubramaniam S et al (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  30. Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leisner SM, Gelvin SB (1988) Structure of the octopine synthase upstream activator sequence. Proc Natl Acad Sci U S A 85:2553–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DiRita VJ, Gelvin SB (1987) Deletion analysis of the mannopine synthase gene promoter in sunflower crown gall tumors and Agrobacterium tumefaciens. Mol Gen Genet 207:233–241

    Article  CAS  PubMed  Google Scholar 

  33. An G (1986) Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81:86–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. An YQ, McDowell JM, Huang S et al (1996) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121

    Article  CAS  PubMed  Google Scholar 

  35. Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. Structure, localization, and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    Article  CAS  PubMed  Google Scholar 

  36. Johnston AJ, Kirioukhova O, Barrell PJ et al (2010) Dosage-sensitive function of retinoblastoma related and convergent epigenetic control are required during the Arabidopsis life cycle. PLoS Genet 6:e1000988

    Article  PubMed  PubMed Central  Google Scholar 

  37. Borghi L, Gutzat R, Fütterer J et al (2010) Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. Plant Cell 22:1792–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    Article  CAS  PubMed  Google Scholar 

  40. Kaufmann K, Wellmer F, Muiño JM et al (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  CAS  PubMed  Google Scholar 

  41. Ito T, Wellmer F, Yu H et al (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  CAS  PubMed  Google Scholar 

  42. Lenhard M, Bohnert A, Jurgens G et al (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    Article  CAS  PubMed  Google Scholar 

  43. Sun B, Xu Y, Ng KH et al (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geng X, Mackey D (2011) Dose-response to and systemic movement of dexamethasone in the GVG-inducible transgene system in Arabidopsis. Methods Mol Biol 712:59–68

    Article  CAS  PubMed  Google Scholar 

  45. Tornero P, Chao RA, Luthin WN et al (2002) Large-scale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell 14:435–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38:164–171

    Article  CAS  PubMed  Google Scholar 

  47. Masclaux F, Charpenteau M, Takahashi T et al (2004) Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem Biophys Res Commun 321:364–369

    Article  CAS  PubMed  Google Scholar 

  48. Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng Y, Cao C-M, Vikram M et al (2011) A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana. PLoS One 6:e17603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ito T, Ng KH, Lim TS et al (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wellmer F, Alves-Ferreira M, Dubois A et al (2006) Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet 2:e117

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ikeda Y, Banno H, Niu QW et al (2006) The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 47:1443–1456

    Article  CAS  PubMed  Google Scholar 

  54. Mandel MA, Gustafson-Brown C, Savidge B et al (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  55. Tilly JJ, Allen DW, Jack T (1998) The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125:1647–1657

    Article  CAS  PubMed  Google Scholar 

  56. Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353

    Article  CAS  PubMed  Google Scholar 

  57. Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    Article  CAS  PubMed  Google Scholar 

  58. Sawa S, Watanabe K, Goto K et al (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Siegfried KR, Eshed Y, Baum SF et al (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    Article  CAS  PubMed  Google Scholar 

  60. Honma T, Goto K (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021–2030

    Article  CAS  PubMed  Google Scholar 

  61. Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378:199–203

    Article  CAS  PubMed  Google Scholar 

  62. Muschietti J, Dircks L, Vancanneyt G et al (1994) LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. Plant J 6:321–338

    Article  CAS  PubMed  Google Scholar 

  63. Lim CJ, Lee HY, Kim WB et al (2012) Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues. Mol Cells 34:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sicard A, Petit J, Mouras A et al (2008) Meristem activity during flower and ovule development in tomato is controlled by the mini zinc finger gene INHIBITOR OF MERISTEM ACTIVITY. Plant J 55:415–427

    Article  CAS  PubMed  Google Scholar 

  65. Kim WB, Lim CJ, Jang HA et al (2014) SlPMEI, a pollen-specific gene in tomato. Can J Plant Sci 94:73–83

    Article  CAS  Google Scholar 

  66. Kim DH, Park S, Lee JY et al (2018) Enhancing flower color through simultaneous expression of the B-peru and mPAP1 transcription factors under control of a flower-specific promoter. Int J Mol Sci 19:309

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Lou Q, Xu W et al (2011) Characterization of a chalcone synthase (CHS) flower-specific promoter from Lilium orential ‘Sorbonne’. Plant Cell Rep 30:2187–2194

    Article  CAS  PubMed  Google Scholar 

  68. Yu H, Yang SH, Goh CJ (2002) Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol Biol 49:225–237

    Article  CAS  PubMed  Google Scholar 

  69. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62

    Article  CAS  PubMed  Google Scholar 

  70. Che P, Lall S, Howell SH (2008) Acquiring competence for shoot development in Arabidopsis: ARR2 directly targets A-type ARR genes that are differentially activated by CIM preincubation. Plant Signal Behav 3:99–101

    Article  PubMed  PubMed Central  Google Scholar 

  71. Matsuhara S, Jingu F, Takahashi T et al (2000) Heat-shock tagging: a simple method for expression and isolation of plant genome DNA flanked by T-DNA insertions. Plant J 22:79–86

    Article  CAS  PubMed  Google Scholar 

  72. Yoshida K, Kasai T, Garcia MR et al (1995) Heat-inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl Microbiol Biotechnol 44:466–472

    Article  CAS  PubMed  Google Scholar 

  73. van der Fits L, Hilliou F, Memelink J (2001) T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res 10:513–521

    Article  PubMed  Google Scholar 

  74. Jeong DH, An S, Kang H-G et al (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mathews H, Clendennen S, Caldwell CG et al (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zuo J, Niu QW, Frugis G et al (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (JP20H00470, JP21K19266, and JP22H05176) to T.I., and Startup Fund (680-804006) and the Jiangsu Specially-Appointed Professor Program to Y.X.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifeng Xu or Toshiro Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xu, Y., Gan, ES., Ito, T. (2023). Misexpression Approaches for the Manipulation of Flower Development. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3299-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3298-7

  • Online ISBN: 978-1-0716-3299-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics