Skip to main content

Genetic Code Expansion in Mammalian Cells Through Quadruplet Codon Decoding

  • Protocol
  • First Online:
Genetically Incorporated Non-Canonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2676))

  • 763 Accesses

Abstract

Genetic code expansion enables the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins both in vitro and in vivo. In addition to a widely applied nonsense suppression strategy, the use of quadruplet codons could further expand the genetic code. A general approach to genetically incorporate ncAAs in response to quadruplet codons is achieved by utilizing an engineered aminoacyl-tRNA synthetase (aaRS) together with a tRNA variant containing an expanded anticodon loop. Here we provide a protocol to decode quadruplet UAGA codon with a ncAA in mammalian cells. We also describe microscopy imaging and flow cytometry analysis of ncAA mutagenesis in response to quadruplet codons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young DD, Schultz PG (2018) Playing with the molecules of life. ACS Chem Biol 13(4):854–870. https://doi.org/10.1021/acschembio.7b00974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mukai T, Lajoie MJ, Englert M, Soll D (2017) Rewriting the genetic code. Annu Rev Microbiol 71:557–577. https://doi.org/10.1146/annurev-micro-090816-093247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550(7674):53–60. https://doi.org/10.1038/nature24031

    Article  CAS  PubMed  Google Scholar 

  4. Wang K, Schmied WH, Chin JW (2012) Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed 51(10):2288–2297. https://doi.org/10.1002/anie.201105016

    Article  CAS  Google Scholar 

  5. Guo J, Niu W (2022) Genetic code expansion through quadruplet codon decoding. J Mol Biol 434(8):167346. https://doi.org/10.1016/j.jmb.2021.167346

    Article  CAS  PubMed  Google Scholar 

  6. Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, Schultz PG (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci U S A 101(20):7566–7571. https://doi.org/10.1073/pnas.0401517101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444. https://doi.org/10.1038/nature08817

    Article  CAS  PubMed  Google Scholar 

  8. Rackham O, Chin JW (2005) A network of orthogonal ribosome·mRNA pairs. Nat Chem Biol 1(3):159–166. https://doi.org/10.1038/nchembio719

    Article  CAS  PubMed  Google Scholar 

  9. Wang K, Sachdeva A, Cox DJ, Wilf NM, Lang K, Wallace S, Mehl RA, Chin JW (2014) Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nat Chem 6(5):393–403. https://doi.org/10.1038/nchem.1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatterjee A, Lajoie MJ, Xiao H, Church GM, Schultz PG (2014) A bacterial strain with a unique quadruplet codon specifying non-native amino acids. Chembiochem 15(12):1782–1786. https://doi.org/10.1002/cbic.201402104

    Article  CAS  PubMed  Google Scholar 

  11. Wang N, Shang X, Cerny R, Niu W, Guo J (2016) Systematic evolution and study of UAGN decoding tRNAs in a genomically recoded bacteria. Sci Rep 6:21898. https://doi.org/10.1038/srep21898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hankore ED, Zhang L, Chen Y, Liu K, Niu W, Guo J (2019) Genetic incorporation of noncanonical amino acids using two mutually orthogonal quadruplet codons. ACS Synth Biol 8(5):1168–1174. https://doi.org/10.1021/acssynbio.9b00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dunkelmann DL, Willis JCW, Beattie AT, Chin JW (2020) Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat Chem 12(6):535–544. https://doi.org/10.1038/s41557-020-0472-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dunkelmann DL, Oehm SB, Beattie AT, Chin JW (2021) A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nat Chem 13(11):1110–1117. https://doi.org/10.1038/s41557-021-00764-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niu W, Schultz PG, Guo J (2013) An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem Biol 8(7):1640–1645. https://doi.org/10.1021/cb4001662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Wan Y, Wang N, Yuan Z, Niu W, Li Q, Guo J (2018) Controlling the replication of a Genomically recoded HIV-1 with a functional quadruplet codon in mammalian cells. ACS Synth Biol 7(6):1612–1617. https://doi.org/10.1021/acssynbio.8b00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mills EM, Barlow VL, Jones AT, Tsai Y-H (2021) Development of mammalian cell logic gates controlled by unnatural amino acids. Cell Rep Methods 1:100073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xi Z, Davis L, Baxter K, Tynan A, Goutou A, Greiss S (2021) Using a quadruplet codon to expand the genetic code of an animal. bioRxiv. https://doi.org/10.1101/2021.07.17.452788

  19. Chen Y, Wan Y, Wang N, Yuan Z, Niu W, Li Q, Guo J (2018) Controlling the replication of a genomically recoded HIV-1 with a functional quadruplet codon in mammalian cells. ACS Synth Biol 7:1612–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serfling R, Lorenz C, Etzel M, Schicht G, Boettke T, Moerl M, Coin I (2018) Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res 46(1):1–10. https://doi.org/10.1093/nar/gkx1156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation (grant 1553041 to J.G.), National Institute of Health (grant 1R01GM138623 to J.G. and W.N.), and NIH National Institutes of General Medical Sciences (grant P20 GM113126 to J.G. and W.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Niu or Jiantao Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Y., Gao, T., He, X., Niu, W., Guo, J. (2023). Genetic Code Expansion in Mammalian Cells Through Quadruplet Codon Decoding. In: Tsai, YH., Elsässer, S.J. (eds) Genetically Incorporated Non-Canonical Amino Acids. Methods in Molecular Biology, vol 2676. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3251-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3251-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3250-5

  • Online ISBN: 978-1-0716-3251-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics