Skip to main content

A Simple Method for the Detection of Wybutosine-Modified tRNAPheGAA as a Readout of Retrograde tRNA Nuclear Import and Re-export: HCl/Aniline Cleavage and Nonradioactive Northern Hybridization

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2666))

  • 872 Accesses

Abstract

tRNAs are highly mobile molecules that are trafficked back and forth between the nucleus and cytoplasm by several proteins. However, characterization of the movement of tRNAs and the proteins mediating these movements can be difficult. Here, we describe an easy and cost-effective assay to discover genes that are involved in two specific tRNA trafficking events, retrograde nuclear import and nuclear re-export for yeast, Saccharomyces cerevisiae. This assay, referred to as the hydrochloric acid (HCl)/aniline assay, identifies the presence or absence of a unique modification on tRNAPheGAA called wybutosine (yW) that requires mature, spliced tRNAPheGAA to undergo retrograde nuclear import and subsequent nuclear re-export for its addition. Therefore, the presence/absence of yW-modified tRNAPheGAA serves as a readout of retrograde nuclear import and nuclear re-export. This simple assay can be used to determine the role of any gene product in these previously elusive tRNA trafficking events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatterjee K, Nostramo RT, Wan Y, Hopper AK (2018) tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: location, location, location. Biochim Biophys Acta Gene Regul Mech 1861:373–386

    Article  CAS  PubMed  Google Scholar 

  2. Chatterjee K, Majumder S, Wan Y, Shah V, Wu J, Huang HY, Hopper AK (2017) Sharing the load: Mex67-Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev 31:2186–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wan Y, Hopper AK (2018) From powerhouse to processing plant: conserved roles of mitochondrial outer membrane proteins in tRNA splicing. Genes Dev 32:1309–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nostramo RT, Hopper AK (2020) A novel assay provides insight into tRNAPhe retrograde nuclear import and re-export in S. cerevisiae. Nucleic Acids Res 48:11577–11588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoshihisa T, Ohshima C, Yunoki-Esaki K, Endo T (2007) Cytoplasmic splicing of tRNA in Saccharomyces cerevisiae. Genes Cells 12:285–297

    Article  CAS  PubMed  Google Scholar 

  6. Yoshihisa T, Yunoki-Esaki K, Ohshima C, Tanaka N, Endo T (2003) Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria. Mol Biol Cell 14:3266–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hellmuth K, Lau DM, Bischoff FR, Kunzler M, Hurt E, Simos G (1998) Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol Cell Biol 18:6374–6386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Huang HY, Hopper AK (2013) A rapid and sensitive non-radioactive method applicable for genome-wide analysis of Saccharomyces cerevisiae genes involved in small RNA biology. Yeast 30:119–128

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Bao A, Chatterjee K, Wan Y, Hopper AK (2015) Genome-wide screen uncovers novel pathways for tRNA processing and nuclear-cytoplasmic dynamics. Genes Dev 29:2633–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohira T, Suzuki T (2011) Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast. Proc Natl Acad Sci U S A 108:10502–10507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM (2012) Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 18:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Droogmans L, Grosjean H (1987) Enzymatic conversion of guanosine 3′ adjacent to the anticodon of yeast tRNAPhe to N1-methylguanosine and the wye nucleoside: dependence on the anticodon sequence. EMBO J 6:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B (2002) Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop. EMBO J 21:1811–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang HQ, Motorin Y, Jin YX, Grosjean H (1997) Pleiotropic effects of intron removal on base modification pattern of yeast tRNAPhe: an in vitro study. Nucleic Acids Res 25:2694–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noma A, Kirino Y, Ikeuchi Y, Suzuki T (2006) Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J 25:2142–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ladner JE, Schweizer MP (1974) Effects of dilute HCl on yeast tRNAPhe and E. coli tRNA1fMet. Nucleic Acids Res 1:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thiebe R, Zachau HG (1968) A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Eur J Biochem 5:546–555

    Article  CAS  PubMed  Google Scholar 

  18. Burrows CJ, Muller JG (1998) Oxidative nucleobase modifications leading to strand scission. Chem Rev 98:1109–1152

    Article  CAS  PubMed  Google Scholar 

  19. Shaheen HH, Hopper AK (2005) Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:11290–11295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T (2015) Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. eLife 4:e04659

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Institutes of Health [grant number GM122884 to A.K.H.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita K. Hopper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nostramo, R.T., Hopper, A.K. (2023). A Simple Method for the Detection of Wybutosine-Modified tRNAPheGAA as a Readout of Retrograde tRNA Nuclear Import and Re-export: HCl/Aniline Cleavage and Nonradioactive Northern Hybridization. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 2666. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3191-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3191-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3190-4

  • Online ISBN: 978-1-0716-3191-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics