Skip to main content

Electrical Actuation of DNA-Based Nanomechanical Systems

  • Protocol
  • First Online:
DNA and RNA Origami

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2639))

Abstract

DNA nanotechnology provides efficient methods for the sequence-programmable construction of mechanical devices with nanoscale dimensions. The resulting nanomachines could serve as tools for the manipulation of macromolecules with similar functionalities as mechanical tools and machinery in the macroscopic world. In order to drive and control these machines and to perform specific tasks, a fast, reliable, and repeatable actuation mechanism is required that can work against external loads. Here we describe a highly effective method for actuating DNA structures using externally applied electric fields. To this end, electric fields are generated with controllable direction and amplitude inside a miniature electrophoresis device integrated with an epifluorescence microscope. With this setup, DNA-based nanoelectromechanical devices can be precisely controlled. As an example, we demonstrate how a DNA-based nanorobotic system can be used to dynamically position molecules on a molecular platform with high speeds and accuracy. The microscopy setup also described here allows simultaneous monitoring of a large number of nanorobotic arms in real time and at the single nanomachine level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tikhomirov G, Petersen P, Qian L (2017) Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552(7683):67–71. https://doi.org/10.1038/nature24655

    Article  CAS  PubMed  Google Scholar 

  2. Ong LL, Hanikel N, Yaghi OK, Grun C, Strauss MT, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P, Kishi JY, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y, Yin P (2017) Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552(7683):72–77. https://doi.org/10.1038/nature24648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  4. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418. https://doi.org/10.1038/nature08016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37(15):5001–5006. https://doi.org/10.1093/nar/gkp436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3(2):103–113. https://doi.org/10.1038/nchem.957

    Article  CAS  PubMed  Google Scholar 

  7. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608

    Article  CAS  PubMed  Google Scholar 

  8. Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6(3):166–169

    Article  CAS  PubMed  Google Scholar 

  9. Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71. https://doi.org/10.1126/science.1170336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gu H, Chao J, Xiao S-J, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295):202–205. https://doi.org/10.1038/nature09026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marras AE, Zhou L, Su H-J, Castro CE (2015) Programmable motion of DNA origami mechanisms. Proc Natl Acad Sci U S A 112(3):713–718. https://doi.org/10.1073/pnas.1408869112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Green S, Bath J, Turberfield A (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101(23):art. no. 238101. https://doi.org/10.1103/PhysRevLett.101.238101

    Article  CAS  Google Scholar 

  13. Gerling T, Wagenbauer KF, Neuner AM, Dietz H (2015) Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347(6229):1446–1452. https://doi.org/10.1126/science.aaa5372

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Tashiro R, Suzuki Y, Emura T, Hidaka K, Sugiyama H, Endo M (2017) A photoregulated DNA-based rotary system and direct observation of its rotational movement. Chemistry (Weinheim an der Bergstrasse, Germany) 23(16):3979–3985. https://doi.org/10.1002/chem.201605616

    Article  CAS  PubMed  Google Scholar 

  15. Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210. https://doi.org/10.1038/nature09012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pfitzner E, Wachauf C, Kilchherr F, Pelz B, Shih WM, Rief M, Dietz H (2013) Rigid DNA beams for high-resolution single-molecule mechanics. Angew Chem Int Ed Eng 52(30):7766–7771. https://doi.org/10.1002/anie.201302727

    Article  CAS  Google Scholar 

  17. Lauback S, Mattioli KR, Marras AE, Armstrong M, Rudibaugh TP, Sooryakumar R, Castro CE (2018) Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nat Commun 9(1):1446. https://doi.org/10.1038/s41467-018-03601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. List J, Falgenhauer E, Kopperger E, Pardatscher G, Simmel FC (2016) Long-range movement of large mechanically interlocked DNA nanostructures. Nat Commun 7:12414. https://doi.org/10.1038/ncomms12414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viovy JL (2000) Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev Mod Phys 72(3):813–872

    Article  CAS  Google Scholar 

  20. Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Dynamic electrical switching of DNA layers on a metal surface. Nano Lett 4(12):2441–2445. https://doi.org/10.1021/nl0484494

    Article  CAS  Google Scholar 

  21. Kroener F, Traxler L, Heerwig A, Rant U, Mertig M (2018) Magnesium-dependent electrical actuation and stability of DNA origami rods. ACS Appl Mater Interfaces 11(2):2295–2301. https://doi.org/10.1021/acsami.8b18611

    Article  CAS  Google Scholar 

  22. Klapper Y, Sinha N, Ng TWS, Lubrich D (2010) A rotational DNA nanomotor driven by an externally controlled electric field. Small 6(1):44–47. https://doi.org/10.1002/smll.200901106

    Article  CAS  PubMed  Google Scholar 

  23. Kuzyk A, Yurke B, Toppari JJ, Linko V, Torma P (2008) Dielectrophoretic trapping of DNA origami. Small 4(4):447–450. https://doi.org/10.1002/smll.200701320

    Article  CAS  PubMed  Google Scholar 

  24. Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC (2018) A self-assembled nanoscale robotic arm controlled by electric fields. Science 359(6373):296–301. https://doi.org/10.1126/science.aao4284

    Article  CAS  PubMed  Google Scholar 

  25. Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229. https://doi.org/10.1038/nmeth.1570

    Article  CAS  PubMed  Google Scholar 

  26. Wagenbauer KF, Engelhardt FAS, Stahl E, Hechtl VK, Stommer P, Seebacher F, Meregalli L, Ketterer P, Gerling T, Dietz H (2017) How we make DNA origami. Chembiochem 18(19):1873–1885. https://doi.org/10.1002/cbic.201700377

    Article  CAS  PubMed  Google Scholar 

  27. Auer A, Schlichthaerle T, Woehrstein JB, Schueder F, Strauss MT, Grabmayr H, Jungmann R (2018) Nanometer-scale multiplexed super-resolution imaging with an economic 3D-DNA-PAINT microscope. ChemPhysChem 19(22):3024–3034. https://doi.org/10.1002/cphc.201800630

    Article  CAS  PubMed  Google Scholar 

  28. Stahl E, Martin TG, Praetorius F, Dietz H (2014) Facile and scalable preparation of pure and dense DNA origami solutions. Angew Chem Int Edit 53(47):12735–12740. https://doi.org/10.1002/anie.201405991

    Article  CAS  Google Scholar 

  29. Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE (2008) Single-molecule cut-and-paste surface assembly. Science (New York, NY) 319(5863):594–596. https://doi.org/10.1126/science.1151424

    Article  CAS  Google Scholar 

  30. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834. https://doi.org/10.1126/science.1214081

    Article  CAS  PubMed  Google Scholar 

  31. List J, Weber M, Simmel FC (2014) Hydrophobic actuation of a DNA origami bilayer structure. Angew Chem Int Ed Eng 53(16):4236–4239. https://doi.org/10.1002/anie.201310259

    Article  CAS  Google Scholar 

  32. Funke JJ, Dietz H (2016) Placing molecules with Bohr radius resolution using DNA origami. Nat Nanotechnol 11(1):47–52. https://doi.org/10.1038/nnano.2015.240

    Article  CAS  PubMed  Google Scholar 

  33. Kopperger E, Pirzer T, Simmel FC (2015) Diffusive transport of molecular cargo tethered to a DNA origami platform. Nano Lett 15(4):2693–2699. https://doi.org/10.1021/acs.nanolett.5b00351

    Article  CAS  PubMed  Google Scholar 

  34. Tomaru T, Suzuki Y, Kawamata I, Nomura S-M, Murata S (2017) Stepping operation of a rotary DNA origami device. Chem Commun. https://doi.org/10.1039/C7CC03214E

  35. Ijas H, Nummelin S, Shen B, Kostiainen MA, Linko V (2018) Dynamic DNA origami devices: from strand-displacement reactions to external-stimuli responsive systems. Int J Mol Sci 19(7). https://doi.org/10.3390/ijms19072114

  36. Chen H, Zhang H, Pan J, Cha TG, Li S, Andreasson J, Choi JH (2016) Dynamic and progressive control of DNA origami conformation by modulating DNA helicity with chemical adducts. ACS Nano 10(5):4989–4996. https://doi.org/10.1021/acsnano.6b01339

    Article  CAS  PubMed  Google Scholar 

  37. Ketterer P, Willner EM, Dietz H (2016) Nanoscale rotary apparatus formed from tight-fitting 3D DNA components. Sci Adv 2(2):e1501209. https://doi.org/10.1126/sciadv.1501209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Powell JT, Akhuetie-Oni BO, Zhang Z, Lin C (2016) DNA origami rotaxanes: tailored synthesis and controlled structure switching. Angew Chem Int Ed Eng 55(38):11412–11416. https://doi.org/10.1002/anie.201604621

    Article  CAS  Google Scholar 

  39. Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6):1198–1228. https://doi.org/10.1038/nprot.2017.024

    Article  CAS  PubMed  Google Scholar 

  40. Ueno H, Nishikawa S, Iino R, Tabata KV, Sakakihara S, Yanagida T, Noji H (2010) Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys J 98(9):2014–2023. https://doi.org/10.1016/j.bpj.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuzyk A, Urban MJ, Idili A, Ricci F, Liu N (2017) Selective control of reconfigurable chiral plasmonic metamolecules. Sci Adv 3(4):e1602803. https://doi.org/10.1126/sciadv.1602803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain A, Liu R, Xiang YK, Ha T (2012) Single-molecule pull-down for studying protein interactions. Nat Protoc 7(3):445–452. https://doi.org/10.1038/nprot.2011.452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stein IH, Capone S, Smit JH, Baumann F, Cordes T, Tinnefeld P (2012) Linking single-molecule blinking to chromophore structure and redox potentials. ChemPhysChem 13(4):931–937. https://doi.org/10.1002/cphc.201100820

    Article  CAS  PubMed  Google Scholar 

  44. Aitken CE, Marshall RA, Puglisi JD (2008) An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94(5):1826–1835. https://doi.org/10.1529/biophysj.107.117689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support by the Deutsche Forschungsgemeinschaft through SFB 1032 “Nanoagents” (TPA2).

Jonathan List gratefully acknowledges support by a generous stipend of the “Peter und Traudl Engelhorn-Stiftung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich C. Simmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

List, J., Kopperger, E., Simmel, F.C. (2023). Electrical Actuation of DNA-Based Nanomechanical Systems. In: Valero, J. (eds) DNA and RNA Origami. Methods in Molecular Biology, vol 2639. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3028-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3028-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3027-3

  • Online ISBN: 978-1-0716-3028-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics