Skip to main content

Live Imaging of Axonal Dynamics After Laser Axotomy of Peripheral Neurons in Zebrafish

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

  • 683 Accesses

Abstract

Axon severing results in diverse outcomes, including successful regeneration and reestablishment of function, failure to regenerate, or neuronal cell death. Experimentally injuring an axon makes it possible to study degeneration of the distal stump that was detached from the cell body and document the successive steps of regeneration. Precise injury reduces damage to the environment surrounding an axon, and thereby the involvement of extrinsic processes, such as scarring or inflammation, enabling researchers to isolate the role that intrinsic factors play in regeneration. Several methods have been used to sever axons, each with advantages and disadvantages. This chapter describes using a laser on a two-photon microscope to cut individual axons of touch-sensing neurons in zebrafish larvae, and live confocal imaging to monitor its regeneration, a method that provides exceptional resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rasmussen JP, Sagasti A (2016) Learning to swim, again: axon regeneration in fish. Exp Neurol 287:318–330

    Article  PubMed  Google Scholar 

  2. Mahar M, Cavalli V (2018) Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci 19:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Uyeda A, Muramatsu R (2020) Molecular mechanisms of central nervous system axonal regeneration and remyelination: a review. Int J Mol Sci 21:8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giger RJ, Hollis ER 2nd, Tuszynski MH (2010) Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2:a001867

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stone MC, Albertson RM, Chen L et al (2014) Dendrite injury triggers DLK-independent regeneration. Cell Rep 6:247–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wlaschin JJ, Gluski JM, Nguyen E et al (2018) Dual leucine zipper kinase is required for mechanical allodynia and microgliosis after nerve injury. elife 7:e33910

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Brien GS, Rieger S, Martin SM et al (2009) Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J Vis Exp 16(24):1129. https://doi.org/10.3791/1129

  9. Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yanik MF, Cinar H, Cinar HN et al (2004) Neurosurgery: functional regeneration after laser axotomy. Nature 432:822

    Article  CAS  PubMed  Google Scholar 

  11. Hammarlund M, Jorgensen EM, Bastiani MJ (2007) Axons break in animals lacking beta-spectrin. J Cell Biol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ylera B, Ertürk A, Hellal F et al (2009) Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol 19:930–936

    Article  CAS  PubMed  Google Scholar 

  13. Jackson J, Canty AJ, Huang L et al (2015) Laser-mediated microlesions in mouse neocortex to investigate neuronal degeneration and regeneration. Curr Protoc Neurosci 73:2.24.1–2.24.17

    Article  PubMed  Google Scholar 

  14. Allegra Mascaro AL, Sacconi L, Pavone FS (2010) Multi-photon nanosurgery in live brain. Front Neuroenerg 2:21

    Google Scholar 

  15. Bormann P, Zumsteg VM, LWA R et al (1998) Target contact regulates GAP-43 and alpha-tubulin mRNA levels in regenerating retinal ganglion cells. J Neurosci 52(4):405–419

    CAS  Google Scholar 

  16. Bastmeyer M, Beckmann M, Schwab ME et al (1991) Growth of regenerating goldfish axons is inhibited by rat oligodendrocytes and CNS myelin but not but not by goldfish optic nerve tract oligodendrocyte like cells and fish CNS myelin. J Neurosci 11:626–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vargas ME, Yamagishi Y, Tessier-Lavigne M et al (2015) Live imaging of calcium dynamics during axon degeneration reveals two functionally distinct phases of calcium influx. J Neurosci 35:15026–15038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen JP, Sack GS, Martin SM et al (2015) Vertebrate epidermal cells are broad-specificity phagocytes that clear sensory axon debris. J Neurosci 35:559–570

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lewis GM, Kucenas S (2013) Motor nerve transection and time-lapse imaging of glial cell behaviors in live zebrafish. J Vis Exp. https://doi.org/10.3791/50621

  20. Rosenberg AF, Wolman MA, Franzini-Armstrong C et al (2012) In vivo nerve-macrophage interactions following peripheral nerve injury. J Neurosci 32:3898–3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rieger S, Sagasti A (2011) Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 9:e1000621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palanca AMS, Lee S-L, Yee LE et al (2013) New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Dev Neurobiol 73:152–167

    Article  CAS  PubMed  Google Scholar 

  23. Katz HR, Menelaou E, Hale ME (2021) Morphological and physiological properties of Rohon-Beard neurons along the zebrafish spinal cord. J Comp Neurol 529:1499–1515

    Article  CAS  PubMed  Google Scholar 

  24. Sagasti A, Guido MR, Raible DW et al (2005) Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Curr Biol 15:804–814

    Article  CAS  PubMed  Google Scholar 

  25. Cold Spring Harbor Laboratory Press (2021) 1559–6095. http://cshprotocols.cshlp.org. Accessed 13 May 2021

  26. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. https://doi.org/10.3791/1115

  27. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  28. The Zebrafish Information Network (1994–2021). https://zfin.atlassian.net. Accessed 13 May 2021

  29. Stil A, Drapeau P (2016) Neuronal labeling patterns in the spinal cord of adult transgenic zebrafish. Dev Neurobiol 76:642–660

    Article  CAS  PubMed  Google Scholar 

  30. Satou C, Kimura Y, Hirata H et al (2013) Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons. Development 140:3927–3931

    Article  CAS  PubMed  Google Scholar 

  31. Lister JA, Robertson CP, Lepage T et al (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    Article  CAS  PubMed  Google Scholar 

  32. D’Agati G, Beltre R, Sessa A et al (2017) A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish. Dev Biol 430:11–17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

KPA was supported by a Cota-Robles fellowship, Bridge to the Doctorate Fellowship, and NIH fellowship F31NS106742-02. This work was supported by NIH grant R01AR064582 (to AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Sagasti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adula, K.P., Sagasti, A. (2023). Live Imaging of Axonal Dynamics After Laser Axotomy of Peripheral Neurons in Zebrafish. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics