Skip to main content

Optimized Fixation and Phalloidin Staining of Basally Localized F-Actin Networks in Collectively Migrating Follicle Cells

  • Protocol
  • First Online:
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2626))

Abstract

The follicular epithelial cells of the Drosophila egg chamber have become a premier model to study how cells globally orient their actin-based machinery for collective migration. The basal surface of each follicle cell has lamellipodial and filopodial protrusions that extend from its leading edge and an array of stress fibers that mediate its adhesion to the extracellular matrix; these migratory structures are all globally aligned in the direction of tissue movement. To understand how this global alignment is achieved, one must be able to reliably visualize the underlying F-actin; however, dynamic F-actin networks can be difficult to preserve in fixed tissues. Here, we describe an optimized protocol for the fixation and phalloidin staining of the follicular epithelium. We also provide a brief primer on relevant aspects of the image acquisition process to ensure high quality data are collected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. https://doi.org/10.1038/nrm2720

    Article  CAS  Google Scholar 

  2. Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17(2):97–109. https://doi.org/10.1038/nrm.2015.14

    Article  CAS  Google Scholar 

  3. Cetera M, Ramirez-San Juan GR, Oakes PW, Lewellyn L, Fairchild MJ, Tanentzapf G, Gardel MG, Horne-Badovinac S (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:5511. https://doi.org/10.1038/ncomms6511

    Article  CAS  Google Scholar 

  4. Gutzeit HO (1991) Organization and in vitro activity of microfilament bundles associated with the basement membrane of Drosophila follicles. Acta Histochem Suppl 41:201–210

    CAS  Google Scholar 

  5. Gutzeit HO, Eberhardt W (1991) Laminin and basement membrane-associated microfilaments in wild-type and mutant Drosophila ovarian follicles. J Cell Sci 100(4):781–788. https://doi.org/10.1242/jcs.100.4.781

    Article  Google Scholar 

  6. Gutzeit HO (1990) The microfilament pattern in the somatic follicle cells of mid-vitellogenic ovarian follicles of Drosophila. Eur J Cell Biol 53(2):349–356

    CAS  Google Scholar 

  7. Sherrard KM, Cetera M, Horne-Badovinac S (2021) DAAM mediates the assembly of long-lived, treadmilling stress fibers in collectively migrating epithelial cells in Drosophila. eLife 10:e72881. https://doi.org/10.7554/eLife.72881

    Article  CAS  Google Scholar 

  8. Bateman J, Reddy RS, Saito H, Van Vactor D (2001) The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr Biol 11(17):1317–1327. https://doi.org/10.1016/S0960-9822(01)00420-1

    Article  CAS  Google Scholar 

  9. Delon I, Brown NH (2009) The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium. J Cell Sci 122(23):4363–4374. https://doi.org/10.1242/jcs.055996

    Article  CAS  Google Scholar 

  10. Spracklen J, Fagan TN, Lovander KE, Tootle T (2014) The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 393(2):209–226. https://doi.org/10.1016/j.ydbio.2014.06.022

    Article  CAS  Google Scholar 

  11. Horne-Badovinac S, Bilder D (2005) Mass transit: epithelial morphogenesis in the Drosophila egg chamber. Dev Dyn 232(3):559–574. https://doi.org/10.1002/dvdy.20286

    Article  CAS  Google Scholar 

  12. Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331(6020):1071–1074. https://doi.org/10.1126/science.1199424

    Article  CAS  Google Scholar 

  13. Horne-Badovinac S (2014) The drosophila egg chamber—a new spin on how tissues elongate. Integr Comp Biol 54(4):667–676. https://doi.org/10.1093/icb/icu067

    Article  CAS  Google Scholar 

  14. Cetera M, Lewellyn L, Horne-Badovinac S (2016) Cultivation and live imaging of drosophila ovaries. In: Dahmann C (ed) Drosophila. Methods in molecular biology, vol 1478. Humana Press, New York, NY, pp 215–226

    Google Scholar 

  15. Prasad M, Jang AC-C, Starz-Gaiano M, Melani M, Montell DJ (2007) A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2(10):2467–2473. https://doi.org/10.1038/nprot.2007.363

    Article  CAS  Google Scholar 

  16. Drummond-Barbosa D, Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231(1):265–278. https://doi.org/10.1006/dbio.2000.0135

    Article  CAS  Google Scholar 

  17. Mazzalupo S, Cooley L (2006) Illuminating the role of caspases during Drosophila oogenesis. Cell Death Differ 13(11):1950–1959. https://doi.org/10.1038/sj.cdd.4401892

    Article  CAS  Google Scholar 

  18. Pritchett TL, Tanner EA, McCall K (2009) Cracking open cell death in the Drosophila ovary. Apoptosis 14(8):969–979. https://doi.org/10.1007/s10495-009-0369-z

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Horne-Badovinac lab for helpful comments on the protocol. M.T.A. was supported by NIH T32 GM007183 and work in the Horne-Badovinac lab is supported by NIH R01s GM126047 and GM136961.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Horne-Badovinac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anderson, M.T., Sherrard, K., Horne-Badovinac, S. (2023). Optimized Fixation and Phalloidin Staining of Basally Localized F-Actin Networks in Collectively Migrating Follicle Cells. In: Giedt, M.S., Tootle, T.L. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 2626. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2970-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2970-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2969-7

  • Online ISBN: 978-1-0716-2970-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics