Skip to main content

Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment

  • Protocol
  • First Online:
The Tumor Microenvironment

Abstract

With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henke E, Nandigama R, Ergün S (2020) Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 6:160

    Article  Google Scholar 

  2. Chu GC, Kimmelman AC, Hezel AF et al (2007) Stromal biology of pancreatic cancer. J Cell Biochem 101:887–907

    Article  CAS  Google Scholar 

  3. Bellizzi AM, Frankel WL (2009) Pancreatic pathology: a practical review. Lab Med 40:417–426

    Article  Google Scholar 

  4. Sarantis P, Koustas E, Papadimitropoulou A et al (2020) Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol 12:173–181

    Article  Google Scholar 

  5. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978

    Article  Google Scholar 

  6. Arun Gopinathan P, Kokila G, Jyothi M et al (2015) Study of collagen birefringence in different grades of oral squamous cell carcinoma using Picrosirius red and polarized light microscopy. Scientifica 2015:1–7

    Article  Google Scholar 

  7. Perry SW, Burke RM, Brown EB (2012) Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 40:277–291

    Article  Google Scholar 

  8. Goss SA, O’Brien WD (1979) Direct ultrasonic velocity measurements of mammalian collagen threads. J Acoust Soc Am 65:507–511

    Article  Google Scholar 

  9. Kakkad S, Zhang J, Akhbardeh A et al (2016) Collagen fibers mediate MRI-detected water diffusion and anisotropy in breast cancers. Neoplasia 18:585–593

    Article  CAS  Google Scholar 

  10. Hauge A, Wegner CS, Gaustad J-V et al (2017) Diffusion-weighted MRI-derived ADC values reflect collagen I content in PDX models of uterine cervical cancer. Oncotarget 8:105682–105691

    Article  Google Scholar 

  11. Boyd N, Martin L, Chavez S et al (2009) Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 10:569–580

    Article  Google Scholar 

  12. Chen Y, Kim J, Yang S et al (2021) Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39:548–565

    Article  CAS  Google Scholar 

  13. Klöppel G (2007) Chronic pancreatitis, pseudotumors and other tumor-like lesions. Mod Pathol 20:S113–S131

    Article  Google Scholar 

  14. Mihaljevic AL, Esposito I, Friess H et al (2009) Molecular biology, models, and histopathology of chronic pancreatitis and pancreatic cancer. Eur Surg 41:250–267

    Article  Google Scholar 

  15. Conklin MW, Eickhoff JC, Riching KM et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178:1221–1232

    Article  Google Scholar 

  16. Brett EA, Sauter MA, Machens H-G et al (2020) Tumor-associated collagen signatures: pushing tumor boundaries. Cancer Metabolism 8:14

    Article  Google Scholar 

  17. Xi G, Guo W, Kang D et al (2021) Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. Theranostics 11:3229–3243

    Article  CAS  Google Scholar 

  18. Conklin MW, Gangnon RE, Sprague BL et al (2018) Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol Biomark Prev 27:138–145

    Article  CAS  Google Scholar 

  19. Drifka CR, Loeffler AG, Mathewson K et al (2016) Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 7:76197–76213

    Article  Google Scholar 

  20. Ouellette JN, Drifka CR, Pointer KB et al (2021) Navigating the collagen jungle: the biomedical potential of fiber Organization in Cancer. Bioengineering (Basel) 8:17

    Article  CAS  Google Scholar 

  21. Boyd NF (2013) Mammographic density and risk of breast cancer. Am Soc Clin Oncol Educ Book:e57–e62. https://doi.org/10.1200/EdBook_AM.2013.33.e57

  22. Lee K, Park HY, Kim KW et al (2019) Advances in whole body MRI for musculoskeletal imaging: diffusion-weighted imaging. J Clin Orthop Trauma 10:680–686

    Article  Google Scholar 

  23. Rasmuson A, Segerström L, Nethander M et al (2012) Tumor development, growth characteristics and Spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma. PLoS One 7:e51297

    Article  CAS  Google Scholar 

  24. Sun Y, Wang J, Shi J et al (2021) Synthetic polarization-sensitive optical coherence tomography by deep learning. npj Digit Med 4:105

    Article  Google Scholar 

  25. Keikhosravi A, Bredfeldt JS, Sagar AK et al (2014) Chapter 28: Second-harmonic generation imaging of cancer. In: Waters JC, Wittman T (eds) Methods in cell biology. Academic, pp 531–546

    Google Scholar 

  26. Leighton TG (2007) What is ultrasound? Prog Biophys Mol Biol 93:3–83

    Article  Google Scholar 

  27. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  Google Scholar 

  28. Szulczewski JM, Inman DR, Entenberg D et al (2016) In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci Rep 6:25086

    Article  CAS  Google Scholar 

  29. Pinkert MA, Simmons ZJ, Niemeier RC et al (2020) Platform for quantitative multiscale imaging of tissue composition. Biomed Opt Express 11:1927–1946

    Article  Google Scholar 

  30. Humm JL, Rosenfeld A, Del Guerra A (2003) From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30:1574–1597

    Article  Google Scholar 

  31. Serai SD (2022) Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr Radiol 52:217–227

    Article  Google Scholar 

  32. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024

    Article  CAS  Google Scholar 

  33. Birk JW, Tadros M, Moezardalan K et al (2014) Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from Normal colonic mucosa. Dig Dis Sci 59:1529–1534

    Article  Google Scholar 

  34. Fujimoto JG, Schmitt J, Swanson E et al (2020) The development of optical coherence tomography. In: Jang I-K (ed) Cardiovascular OCT imaging. Springer, Cham, pp 1–23

    Google Scholar 

  35. Mohler W, Millard AC, Campagnola PJ (2003) Second harmonic generation imaging of endogenous structural proteins. Methods 29:97–109

    Article  CAS  Google Scholar 

  36. Poole JJA, Mostaço-Guidolin LB (2021) Optical microscopy and the extracellular matrix structure: a review. Cell 10:1760

    Article  CAS  Google Scholar 

  37. Neal RD, Tharmanathan P, France B et al (2015) Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. Br J Cancer 112(Suppl 1):S92–S107

    Article  Google Scholar 

  38. Hawkes N (2019) Cancer survival data emphasize importance of early diagnosis. BMJ 364:l408

    Article  Google Scholar 

  39. Clark M, Ford C (2019) Smartphone-, tablet-, or app-based portable ultrasound: a review of clinical effectiveness. Canadian Agency for Drugs and Technologies in Health, Ottawa

    Google Scholar 

  40. Wen B, Campbell KR, Cox BL et al (2015) Multi-view second-harmonic generation imaging of mouse tail tendon via reflective micro-prisms. Opt Lett 40:3201–3204

    Article  CAS  Google Scholar 

  41. Campbell KR, Wen B, Shelton EM et al (2017) 3D second harmonic generation imaging tomography by multi-view excitation. Optica 4:1171–1179

    Article  Google Scholar 

  42. Pinkert MA, Salkowski LR, Keely PJ et al (2018) Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 5:010901

    Google Scholar 

  43. Morse DL, Galons J-P, Payne CM et al (2007) MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR Biomed 20:602–614

    Article  CAS  Google Scholar 

  44. Partridge SC, Nissan N, Rahbar H et al (2017) Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging 45:337–355

    Article  Google Scholar 

  45. Shiftan L, Israely T, Cohen M et al (2005) Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res 65:10316–10323

    Article  CAS  Google Scholar 

  46. Nieminen MT, Rieppo J, Töyräs J et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493

    Article  CAS  Google Scholar 

  47. Ross KA, Williams RM, Schnabel LV et al (2013) Comparison of three methods to quantify repair cartilage collagen orientation. Cartilage 4:111–120

    Article  CAS  Google Scholar 

  48. Faragli A, Merz S, Muzio FPL et al (2020) Estimation of total collagen volume: a T1 mapping versus histological comparison study in healthy Landrace pigs. Int J Cardiovasc Imaging 36:1761–1769

    Article  CAS  Google Scholar 

  49. Fullerton GD, Rahal A (2007) Collagen structure: the molecular source of the tendon magic angle effect. J Magn Reson Imaging 25:345–361

    Article  Google Scholar 

  50. Xia Y (2000) Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Investig Radiol 35:602–621

    Article  CAS  Google Scholar 

  51. Liu XS, Zhang XH, Rajapakse CS et al (2010) Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25:2039–2050

    Article  Google Scholar 

  52. Nowogrodzki A (2018) The world’s strongest MRI machines are pushing human imaging to new limits. Nature 563:24–26

    Article  CAS  Google Scholar 

  53. Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 65:29–35

    Article  Google Scholar 

  54. Krupa K, Bekiesińska-Figatowska M (2015) Artifacts in magnetic resonance imaging. Pol J Radiol 80:93–106

    Article  Google Scholar 

  55. Wald LL, McDaniel PC, Witzel T et al (2020) Low-cost and portable MRI. J Magn Reson Imaging 52:686–696

    Article  Google Scholar 

  56. Hori M, Hagiwara A, Goto M et al (2021) Low-field magnetic resonance imaging. Investig Radiol 56:669–679

    Article  Google Scholar 

  57. Leithner D, Moy L, Morris EA et al (2019) Abbreviated MRI of the breast: does it provide value? J Magn Reson Imaging 49:e85–e100

    Article  Google Scholar 

  58. Caravan P, Das B, Dumas S et al (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed 46:8171–8173

    Article  CAS  Google Scholar 

  59. Salarian M, Turaga RC, Xue S et al (2019) Early detection and staging of chronic liver diseases with a protein MRI contrast agent. Nat Commun 10:4777

    Article  Google Scholar 

  60. Erstad DJ, Sojoodi M, Taylor MS et al (2020) Fibrotic response to neoadjuvant therapy predicts survival in pancreatic cancer and is measurable with collagen-targeted molecular MRI. Clin Cancer Res 26:5007–5018

    Article  CAS  Google Scholar 

  61. Harel A, Eliav U, Akselrod S et al (2008) Magnetization transfer based contrast for imaging denatured collagen. J Magn Reson Imaging 27:1155–1163

    Article  Google Scholar 

  62. Hodgson RJ, O’Connor PJ, Grainger AJ (2012) Tendon and ligament imaging. Br J Radiol 85:1157–1172

    Article  CAS  Google Scholar 

  63. Seifert R, Kersting D, Rischpler C et al (2021) Clinical use of PET/MR in oncology: an update. Semin Nucl Med 52:356–364

    Article  Google Scholar 

  64. Faria SC, Devine CE, Rao B et al (2019) Imaging and staging of endometrial cancer. Semin Ultrasound CT MRI 40:287–294

    Article  CAS  Google Scholar 

  65. Klibanov AL, Hossack JA (2015) Ultrasound in radiology: from anatomic, functional, molecular imaging to drug delivery and image-guided therapy. Investig Radiol 50:657–670

    Article  Google Scholar 

  66. Fields S, Dunn F (1973) Letter: correlation of echographic visualizability of tissue with biological composition and physiological state. J Acoust Soc Am 54:809–812

    Article  CAS  Google Scholar 

  67. Tian L, Hunt B, Bell MAL et al (2021) Deep learning in biomedical optics. Lasers Surg Med 53:748–775

    Article  Google Scholar 

  68. Ultrasound. https://www.nibib.nih.gov/science-education/science-topics/ultrasound. Accessed 12 Mar 2022

  69. Official Statement. https://www.aium.org/officialStatements/39. Accessed 31 Mar 2022

  70. Ultrasound for Cancer. https://www.cancer.org/treatment/understanding-your-diagnosis/tests/ultrasound-for-cancer.html. Accessed 12 Mar 2022

  71. Fornage BD (1995) Role of color Doppler imaging in differentiating between pseudocystic malignant tumors and fluid collections. J Ultrasound Med 14:125–128

    Article  CAS  Google Scholar 

  72. Pohlhammer J, O’Brien WD (1981) Dependence of the ultrasonic scatter coefficient on collagen concentration in mammalian tissues. J Acoust Soc Am 69:283–285

    Article  CAS  Google Scholar 

  73. Inkinen S, Liukkonen J, Ylärinne JH et al (2014) Collagen and chondrocyte concentrations control ultrasound scattering in agarose scaffolds. Ultrasound Med Biol 40:2162–2171

    Article  CAS  Google Scholar 

  74. Mercado KP, Helguera M, Hocking DC et al (2015) Noninvasive quantitative imaging of collagen microstructure in three-dimensional hydrogels using high-frequency ultrasound. Tissue Eng Part C Methods 21:671–682

    Article  CAS  Google Scholar 

  75. Guerrero QW, Rosado-Mendez IM, Drehfal LC et al (2017) Quantifying backscatter anisotropy using the reference phantom method. IEEE Trans Ultrason Ferroelectr Freq Control 64:1063–1077

    Article  Google Scholar 

  76. Guerrero QW, Feltovich H, Rosado-Mendez IM et al (2018) Anisotropy and spatial heterogeneity in quantitative ultrasound parameters: relevance to study of the human cervix. Ultrasound Med Biol 44:1493–1503

    Article  Google Scholar 

  77. Guerrero QW, Feltovich H, Rosado-Mendez IM et al (2019) Quantitative ultrasound biomarkers based on backscattered acoustic power: potential for quantifying remodeling of the human cervix during pregnancy. Ultrasound Med Biol 45:429–439

    Article  Google Scholar 

  78. Guerrero QW, Feltovich H, Rosado-Mendez I et al (2019) Quantitative ultrasound parameters based on the backscattered echo power signal as biomarkers of cervical remodeling: a longitudinal study in the pregnant rhesus macaque. Ultrasound Med Biol 45:1466–1474

    Article  Google Scholar 

  79. Sarvazyan A, Hall TJ, Urban MW et al (2011) An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev 7:255–282

    Article  Google Scholar 

  80. Wang ZL, Sun L, Li Y, Li N (2015) Relationship between elasticity and collagen fiber content in breast disease: a preliminary report. Ultrasonics 57:44–49

    Article  CAS  Google Scholar 

  81. Riegler J, Labyed Y, Rosenzweig S et al (2018) Tumor Elastography and its association with collagen and the tumor microenvironment. Clin Cancer Res 24:4455–4467

    Article  CAS  Google Scholar 

  82. Aumann S, Donner S, Fischer J et al (2019) Optical coherence tomography (OCT): principle and technical realization. In: Bille JF (ed) High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Springer, Cham, pp 59–85

    Chapter  Google Scholar 

  83. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  Google Scholar 

  84. Swanson EA, Fujimoto JG (2017) The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [invited]. Biomed Opt Express 8:1638–1664

    Article  Google Scholar 

  85. Popescu DP, Choo-Smith L-P, Flueraru C et al (2011) Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys Rev 3:155

    Article  CAS  Google Scholar 

  86. Liu G, Lin AJ, Tromberg BJ et al (2012) A comparison of Doppler optical coherence tomography methods. Biomed Opt Express 3:2669–2680

    Article  Google Scholar 

  87. Drexler W, Fujimoto JG (2015) Optical coherence tomography: technology and applications. Springer

    Book  Google Scholar 

  88. Xu J, Song S, Wei W et al (2017) Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source. Biomed Opt Express 8:420–435

    Article  Google Scholar 

  89. Pfäffle C, Spahr H, Hillmann D et al (2017) Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [invited]. Biomed Opt Express 8:1499–1511

    Article  Google Scholar 

  90. Brand S, Poneros JM, Bouma BE et al (2000) Optical coherence tomography in the gastrointestinal tract. Endoscopy 32:796–803

    Article  CAS  Google Scholar 

  91. Srinivasan VJ, Sakadžić S, Gorczynska I et al (2010) Quantitative cerebral blood flow with optical coherence tomography. Opt Express 18:2477–2494

    Article  CAS  Google Scholar 

  92. Kim J, Brown W, Maher JR et al (2015) Functional optical coherence tomography: principles and progress. Phys Med Biol 60:R211–R237

    Article  Google Scholar 

  93. de Boer JF, Hitzenberger CK, Yasuno Y (2017) Polarization sensitive optical coherence tomography – a review [Invited]. Biomed Opt Express 8:1838–1873

    Article  Google Scholar 

  94. Gora MJ, Suter MJ, Tearney GJ et al (2017) Endoscopic optical coherence tomography: technologies and clinical applications [invited]. Biomed Opt Express 8:2405–2444

    Article  CAS  Google Scholar 

  95. Wang J, Xu Y, Boppart SA (2017) Review of optical coherence tomography in oncology. J Biomed Opt 22:121711

    Article  Google Scholar 

  96. Wang J, Xu Y, Mesa KJ et al (2018) Complementary use of polarization-sensitive and standard OCT metrics for enhanced intraoperative differentiation of breast cancer. Biomed Opt Express 9:6519–6528

    Article  Google Scholar 

  97. Spaide RF, Fujimoto JG, Waheed NK et al (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55

    Article  Google Scholar 

  98. Hariri LP, Adams DC, Applegate MB et al (2019) Distinguishing tumor from associated fibrosis to increase diagnostic biopsy yield with polarization-sensitive optical coherence tomography. Clin Cancer Res 25:5242–5249

    Article  CAS  Google Scholar 

  99. Oldenburg AL, Applegate BE, Izatt JA et al (2008) Molecular OCT contrast enhancement and imaging. In: Drexler W, Fujimoto JG (eds) Optical coherence tomography: technology and applications. Springer, Berlin/Heidelberg, pp 713–756

    Chapter  Google Scholar 

  100. Skala MC, Crow MJ, Wax A et al (2008) Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres. Nano Lett 8:3461–3467

    Article  CAS  Google Scholar 

  101. Tucker-Schwartz JM, Beavers KR, Sit WW et al (2014) In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography. Biomed Opt Express 5:1731–1743

    Article  Google Scholar 

  102. Oldenburg AL, Toublan FJ-J, Suslick KS et al (2005) Magnetomotive contrast for in vivo optical coherence tomography. Opt Express 13:6597–6614

    Article  Google Scholar 

  103. Crecea V, Ahmad A, Boppart SA (2013) Magnetomotive optical coherence elastography for microrheology of biological tissues. J Biomed Opt 18:121504

    Article  Google Scholar 

  104. Kennedy KM, McLaughlin RA, Kennedy BF et al (2013) Needle optical coherence elastography for the measurement of microscale mechanical contrast deep within human breast tissues. J Biomed Opt 18:121510

    Article  Google Scholar 

  105. Leartprapun N, Iyer RR, Untracht GR et al (2018) Photonic force optical coherence elastography for three-dimensional mechanical microscopy. Nat Commun 9:2079

    Article  Google Scholar 

  106. Oldenburg AL, Xu C, Boppart SA (2007) Spectroscopic optical coherence tomography and microscopy. IEEE J Sel Top Quantum Electron 13:1629–1640

    Article  CAS  Google Scholar 

  107. Robles FE, Wilson C, Grant G et al (2011) Molecular imaging true-colour spectroscopic optical coherence tomography. Nat Photon 5:744–747

    Article  CAS  Google Scholar 

  108. Westphal V, Yazdanfar S, Rollins AM et al (2002) Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt Lett 27:34–36

    Article  Google Scholar 

  109. Baumann B (2017) Polarization sensitive optical coherence tomography: a review of technology and applications. Appl Sci 7:474

    Article  Google Scholar 

  110. Tuchin VV (2016) Polarized light interaction with tissues. J Biomed Opt 21:071114

    Article  Google Scholar 

  111. Li E, Makita S, Hong Y-J et al (2017) Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography. Biomed Opt Express 8:1290–1305

    Article  Google Scholar 

  112. Walther J, Li Q, Villiger M et al (2019) Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo. Biomed Opt Express 10:1942–1956

    Article  CAS  Google Scholar 

  113. Fujimoto JG, Pitris C, Boppart SA et al (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25

    Article  CAS  Google Scholar 

  114. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986

    Article  CAS  Google Scholar 

  115. Tang P, Kirby MA, Le N et al (2021) Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations. Light Sci Appl 10:237

    Article  CAS  Google Scholar 

  116. Li Q, Karnowski K, Untracht G et al (2020) Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus. Biomed Opt Express 11:1122–1138

    Article  CAS  Google Scholar 

  117. Vasquez D, Knorr F, Hoffmann F et al (2021) Multimodal scanning microscope combining optical coherence tomography, Raman spectroscopy and fluorescence lifetime microscopy for mesoscale label-free imaging of tissue. Anal Chem 93:11479–11487

    Article  CAS  Google Scholar 

  118. Scolaro L, McLaughlin RA, Kennedy BF et al (2014) A review of optical coherence tomography in breast cancer. Photonics Lasers Med 3:225–240

    Article  Google Scholar 

  119. Nolan RM, Adie SG, Marjanovic M et al (2016) Intraoperative optical coherence tomography for assessing human lymph nodes for metastatic cancer. BMC Cancer 16:144

    Article  Google Scholar 

  120. Si P, Honkala A, Zerda A et al (2020) Optical microscopy and coherence tomography of cancer in living subjects. Trends Cancer 6:205–222

    Article  CAS  Google Scholar 

  121. Yang VXD, Tang S, Gordon ML et al (2005) Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest Endosc 61:879–890

    Article  Google Scholar 

  122. Yashin KS, Kiseleva EB, Gubarkova EV et al (2019) Cross-polarization optical coherence tomography for brain tumor imaging. Front Oncol 9:201

    Article  Google Scholar 

  123. Park BH, Saxer C, Srinivas SM et al (2001) In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt 6:474–479

    Article  CAS  Google Scholar 

  124. Chen P-H, Lee H-Y, Chen Y-F et al (2020) Detection of Oral dysplastic and early cancerous lesions by polarization-sensitive optical coherence tomography. Cancers 12:2376

    Article  CAS  Google Scholar 

  125. Duan L, Yamanari M, Yasuno Y (2012) Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography. Opt Express 20:3353–3366

    Article  Google Scholar 

  126. Strasswimmer J, Pierce MC, Park BH et al (2004) Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J Biomed Opt 9:292–298

    Article  Google Scholar 

  127. Kim KH, Burns JA, Bernstein JJ et al (2010) In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter. Opt Express 18:14644–14653

    Article  CAS  Google Scholar 

  128. Adams DC, Szabari MV, Lagares D et al (2020) Assessing the progression of systemic sclerosis by monitoring the tissue optic axis using PS-OCT. Sci Rep 10:2561

    Article  CAS  Google Scholar 

  129. Wang LV, Zimnyakov DA (2006) Optical polarization in biomedical applications. Springer

    Google Scholar 

  130. Kalwani NM, Ong CA, Lysaght AC et al (2013) Quantitative polarized light microscopy of unstained mammalian cochlear sections. J Biomed Opt 18:26021

    Article  Google Scholar 

  131. Oldenbourg R (2013) Polarized light microscopy: principles and practice. Cold Spring Harb Protoc 2013:pdb.top078600. https://doi.org/10.1101/pdb.top078600

    Article  Google Scholar 

  132. He C, He H, Chang J et al (2021) Polarization optics for biomedical and clinical applications: a review. Light Sci Appl 10:194

    Article  CAS  Google Scholar 

  133. Drifka CR, Loeffler AG, Mathewson K et al (2016) Comparison of picrosirius red staining with second harmonic generation imaging for the quantification of clinically relevant collagen fiber features in histopathology samples. J Histochem Cytochem 64:519–529

    Article  CAS  Google Scholar 

  134. Keikhosravi A, Liu Y, Drifka C et al (2017) Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy. Biomed Opt Express 8:4243–4256

    Article  CAS  Google Scholar 

  135. Keikhosravi A, Shribak M, Conklin MW et al (2021) Real-time polarization microscopy of fibrillar collagen in histopathology. Sci Rep 11:19063

    Article  CAS  Google Scholar 

  136. Azzam RMA (2016) Stokes-vector and Mueller-matrix polarimetry [invited]. J Opt Soc Am A 33:1396–1408

    Article  CAS  Google Scholar 

  137. Mehta SB, Shribak M, Oldenbourg R (2013) Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity. J Opt 15:094007

    Article  Google Scholar 

  138. Wolman M, Kasten FH (1986) Polarized light microscopy in the study of the molecular structure of collagen and reticulin. Histochemistry 85:41–49

    Article  CAS  Google Scholar 

  139. Rieppo J, Hallikainen J, Jurvelin JS et al (2008) Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech 71:279–287

    Article  Google Scholar 

  140. Changoor A, Tran-Khanh N, Méthot S et al (2011) A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair. Osteoarthr Cartil 19:126–135

    Article  CAS  Google Scholar 

  141. Antonelli MR (2011) Biomedical applications of polarimetric imaging contrast. Initial studies for scattering media and human tissues. Citeseer

    Google Scholar 

  142. Ghosh N, Vitkin AI (2011) Tissue polarimetry: concepts, challenges, applications, and outlook. J Biomed Opt 16:110801

    Article  Google Scholar 

  143. Park J, Lindberg A, Vizet J et al (2019) Cervical cancer diagnostics with a multispectral Mueller polarimetric colposcope. In: Clinical and preclinical optical diagnostics II (2019), paper 11073_9. Optica Publishing Group, p 11073_9

    Google Scholar 

  144. Gribble A, Pinkert MA, Westreich J et al (2019) A multiscale Mueller polarimetry module for a stereo zoom microscope. Biomed Eng Lett 9:339–349

    Article  Google Scholar 

  145. Le DL, Nguyen DT, Le TH et al (2021) Characterization of healthy and cancerous human skin tissue utilizing Stokes–Mueller polarimetry technique. Opt Commun 480:126460

    Article  CAS  Google Scholar 

  146. Oldenbourg R (1996) A new view on polarization microscopy. Nature 381:811–812

    Article  CAS  Google Scholar 

  147. Shribak M (2015) Polychromatic polarization microscope: bringing colors to a colorless world. Sci Rep 5:17340

    Article  CAS  Google Scholar 

  148. Oldenbourg R (2005) Polarization microscopy with the LC-PolScope. Live cell imaging: a laboratory manual. Cold Spring Harbour Laboratory Press, pp 205–237

    Google Scholar 

  149. Yang B, Brazile B, Jan N-J et al (2018) Structured polarized light microscopy for collagen fiber structure and orientation quantification in thick ocular tissues. J Biomed Opt 23:106001

    Article  Google Scholar 

  150. Mazumder N, Qiu J, Foreman MR et al (2012) Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter. Opt Express 20:14090–14099

    Article  CAS  Google Scholar 

  151. Samim M, Krouglov S, Barzda V (2016) Nonlinear Stokes-Mueller polarimetry. Phys Rev A 93:013847

    Article  Google Scholar 

  152. Kontenis L, Samim M, Karunendiran A et al (2016) Second harmonic generation double stokes Mueller polarimetric microscopy of myofilaments. Biomed Opt Express 7:559–569

    Article  Google Scholar 

  153. Cisek R, Joseph A, Harvey M et al (2021) Polarization-sensitive second harmonic generation microscopy for investigations of diseased collagenous tissues. Front Phys 9. https://doi.org/10.3389/fphy.2021.726996

  154. Yang B, Lee P-Y, Hua Y et al (2020) Instant polarized light microscopy for imaging collagen microarchitecture and dynamics. J Biophotonics 14:e202000326

    Google Scholar 

  155. Guo S-M, Yeh L-H, Folkesson J et al (2020) Revealing architectural order with quantitative label-free imaging and deep learning. elife 9:e55502

    Article  CAS  Google Scholar 

  156. Yeh L-H, Ivanov IE, Byrum JR et al (2021) uPTI: uniaxial permittivity tensor imaging of intrinsic density and anisotropy. https://doi.org/10.1101/2020.12.15.422951

  157. Campagnola PJ, Millard AC, Terasaki M et al (2002) Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82:493–508

    Article  CAS  Google Scholar 

  158. Pena A-M, Boulesteix T, Dartigalongue T et al (2005) Chiroptical effects in the second harmonic signal of collagens I and IV. J Am Chem Soc 127:10314–10322

    Article  CAS  Google Scholar 

  159. Campagnola P (2011) Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem 83:3224–3231

    Article  CAS  Google Scholar 

  160. James DS, Campagnola PJ (2021) Recent advancements in optical harmonic generation microscopy: applications and perspectives. BME Front. https://doi.org/10.34133/2021/3973857

  161. Su P-J, Chen W-L, Chen Y-F et al (2011) Determination of collagen nanostructure from second-order susceptibility tensor analysis. Biophys J 100:2053–2062

    Article  CAS  Google Scholar 

  162. Campagnola PJ, Dong C-Y (2011) Second harmonic generation microscopy: principles and applications to disease diagnosis. Laser Photonics Rev 5:13–26

    Article  CAS  Google Scholar 

  163. Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. BioArchitecture 2:143–157

    Article  Google Scholar 

  164. Latour G, Gusachenko I, Kowalczuk L et al (2012) In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy. Biomed Opt Express 3:1–15

    Article  Google Scholar 

  165. Nadiarnykh O, LaComb RB, Brewer MA et al (2010) Alterations of the extracellular matrix in ovarian cancer studied by Second Harmonic Generation imaging microscopy. BMC Cancer 10:94

    Article  Google Scholar 

  166. Nagatomi J, Ebong EE (2018) Mechanobiology handbook, 2nd edn. CRC Press

    Google Scholar 

  167. Brasselet S (2011) Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv Opt Photon 3:205

    Article  Google Scholar 

  168. Tilbury K, Lien C-H, Chen S-J et al (2014) Differentiation of Col I and Col III isoforms in stromal models of ovarian cancer by analysis of second harmonic generation polarization and emission directionality. Biophys J 106:354–365

    Article  CAS  Google Scholar 

  169. Nadiarnykh O, Campagnola PJ (2009) Retention of polarization signatures in SHG microscopy of scattering tissues through optical clearing. Opt Express 17:5794–5806

    Article  CAS  Google Scholar 

  170. Campbell KR, Campagnola PJ (2017) Wavelength-dependent second harmonic generation circular dichroism for differentiation of Col I and Col III isoforms in stromal models of ovarian cancer based on intrinsic chirality differences. J Phys Chem B 121:1749–1757

    Article  CAS  Google Scholar 

  171. Favreau PF, Deal JA, Harris B et al (2020) Label-free spectroscopic tissue characterization using fluorescence excitation-scanning spectral imaging. J Biophotonics 13:e201900183

    Google Scholar 

  172. In vivo fluorescence spectroscopy and imaging for oncological applications – Wagnieres – 1998 – Photochemistry and Photobiology – Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.1998.tb02521.x?sid=nlm%3Apubmed. Accessed 21 Mar 2022

  173. Azaripour A, Lagerweij T, Scharfbillig C et al (2016) A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem 51:9–23

    Article  Google Scholar 

  174. Ariel P (2017) A beginner’s guide to tissue clearing. Int J Biochem Cell Biol 84:35–39

    Article  CAS  Google Scholar 

  175. White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48

    Article  CAS  Google Scholar 

  176. Squirrell JM, Wokosin DL, White JG et al (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767

    Article  CAS  Google Scholar 

  177. Tserevelakis GJ, Filippidis G, Megalou EV et al (2011) Cell tracking in live Caenorhabditis elegans embryos via third harmonic generation imaging microscopy measurements. J Biomed Opt 16:046019

    Article  Google Scholar 

  178. Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360

    Article  CAS  Google Scholar 

  179. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. PNAS 99:11014–11019

    Article  CAS  Google Scholar 

  180. Clough M, Chen IA, Park S-W et al (2021) Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds. Nat Commun 12:6638

    Article  CAS  Google Scholar 

  181. Demas J, Manley J, Tejera F et al (2021) High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy. Nat Methods 18:1103–1111

    Article  CAS  Google Scholar 

  182. Scipioni L, Rossetta A, Tedeschi G et al (2021) Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat Methods 18:542–550

    Article  CAS  Google Scholar 

  183. Chen X, Nadiarynkh O, Plotnikov S et al (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669

    Article  CAS  Google Scholar 

  184. Fast A, Lal A, Durkin AF et al (2020) Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Sci Rep 10:18093

    Article  CAS  Google Scholar 

  185. You S, Sun Y, Chaney EJ et al (2018) Slide-free virtual histochemistry (Part I): development via nonlinear optics. Biomed Opt Express 9:5240–5252

    Article  CAS  Google Scholar 

  186. Pouli D, Balu M, Alonzo CA et al (2016) Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci Transl Med 8:367ra169

    Article  Google Scholar 

  187. Lukina MM, Dudenkova VV, Shimolina LE et al (2019) In vivo metabolic and SHG imaging for monitoring of tumor response to chemotherapy. Cytometry A 95:47–55

    Article  CAS  Google Scholar 

  188. Williams C, Quinn KP, Georgakoudi I et al (2014) Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater 10:194–204

    Article  CAS  Google Scholar 

  189. Sun S, Titushkin I, Cho M (2006) Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry 69:133–141

    Article  CAS  Google Scholar 

  190. Reusch LM, Feltovich H, Carlson LC et al (2013) Nonlinear optical microscopy and ultrasound imaging of human cervical structure. J Biomed Opt 18:031110

    Article  Google Scholar 

  191. Rezakhaniha R, Agianniotis A, Schrauwen JTC et al (2012) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11:461–473

    Article  CAS  Google Scholar 

  192. Kartasalo K, Pölönen R-P, Ojala M et al (2015) CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinform 16:344

    Article  Google Scholar 

  193. Marcotti S, de Freitas DB, Troughton LD et al (2021) A workflow for rapid unbiased quantification of fibrillar feature alignment in biological images. Front Comput Sci 3:745831

    Article  Google Scholar 

  194. Steger C (1998) An unbiased detector of curvilinear structures. IEEE Trans Pattern Anal Mach Intell 20:113–125

    Article  Google Scholar 

  195. Wershof E, Park D, Barry DJ et al (2021) A FIJI Macro for quantifying pattern in extracellular matrix. Life Sci Alliance 4:e202000880

    Article  Google Scholar 

  196. Xu T, Vavylonis D, Tsai F-C et al (2015) SOAX: a software for quantification of 3D biopolymer networks. Sci Rep 5:9081

    Article  Google Scholar 

  197. Liu Y, Eliceiri KW (2020) Quantifying fibrillar collagen organization with curvelet transform-based tools. J Vis Exp 11. https://doi.org/10.3791/61931

  198. Preibisch S, Saalfeld S, Tomancak P (2009) Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25:1463–1465

    Article  CAS  Google Scholar 

  199. Hörl D, Rojas Rusak F, Preusser F et al (2019) BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat Methods 16:870–874

    Article  Google Scholar 

  200. Chalfoun J, Majurski M, Blattner T et al (2017) MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci Rep 7:4988

    Article  Google Scholar 

  201. Muhlich J, Chen Y-A, Russell D et al (2021) Stitching and registering highly multiplexed whole slide images of tissues and tumors using ASHLAR software. Bioinformatics. https://doi.org/10.1101/2021.04.20.440625

  202. Bankhead P, Loughrey MB, Fernández JA et al (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878

    Article  Google Scholar 

  203. Sofroniew N, Lambert T, Nunez-Iglesias J et al (2022) napari/napari: 0.4.15. Zenodo

    Google Scholar 

  204. Besson S, Leigh R, Linkert M et al (2019) Bringing open data to whole slide imaging. Digit Pathol 2019:3–10

    Article  Google Scholar 

  205. Fernandez R, Moisy C (2021) Fijiyama: a registration tool for 3D multimodal time-lapse imaging. Bioinformatics 37:1482–1484

    Article  CAS  Google Scholar 

  206. Chiaruttini N, Burri O, Haub P et al (2022) An open-source whole slide image registration workflow at cellular precision using Fiji, QuPath and Elastix. Front Comput Sci 3:780026

    Article  Google Scholar 

  207. Klein S, Staring M, Murphy K et al (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29:196–205

    Article  Google Scholar 

  208. Avants BB, Tustison NJ, Stauffer M et al (2014) The insight ToolKit image registration framework. Front Neuroinform 8:44

    Article  Google Scholar 

  209. Keikhosravi A, Li B, Liu Y et al (2020) Intensity-based registration of bright-field and second-harmonic generation images of histopathology tissue sections. Biomed Opt Express 11:160–173

    Article  CAS  Google Scholar 

  210. Haskins G, Kruger U, Yan P (2020) Deep learning in medical image registration: a survey. Mach Vis Appl 31:8

    Article  Google Scholar 

  211. Hadsell R, Chopra S, LeCun Y (2006) Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE computer society conference on computer vision and pattern recognition – volume 2 (CVPR’06). IEEE, New York, pp 1735–1742

    Google Scholar 

  212. van den Oord A, Li Y, Vinyals O (2019) Representation learning with contrastive predictive coding. arXiv:180703748 [cs, stat]

    Google Scholar 

  213. Pielawski N, Wetzer E, Öfverstedt J et al (2020) CoMIR: contrastive multimodal image representation for registration. arXiv:200606325 [cs, eess]

    Google Scholar 

  214. Kaji S, Kida S (2019) Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol Phys Technol 12:235–248

    Article  Google Scholar 

  215. Keikhosravi A, Li B, Liu Y et al (2020) Non-disruptive collagen characterization in clinical histopathology using cross-modality image synthesis. Commun Biol 3:414

    Article  CAS  Google Scholar 

  216. Si L, Li N, Huang T et al (2022) Computational image translation from Mueller matrix polarimetry to bright-field microscopy. J Biophotonics 15:e202100242

    Article  Google Scholar 

  217. Isola P, Zhu J-Y, Zhou T et al (2017) Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, pp 5967–5976

    Chapter  Google Scholar 

  218. Zhu J-Y, Park T, Isola P et al (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, Venice, pp 2242–2251

    Chapter  Google Scholar 

  219. Lu J, Öfverstedt J, Lindblad J et al (2021) Is image-to-image translation the panacea for multimodal image registration? A comparative study. arXiv:210316262 [cs, eess]

    Google Scholar 

  220. Durkee MS, Abraham R, Clark MR et al (2021) Artificial intelligence and cellular segmentation in tissue microscopy images. Am J Pathol 191:1693–1701

    Article  Google Scholar 

  221. Scherf N, Huisken J (2015) The smart and gentle microscope. Nat Biotechnol 33:815–818

    Article  CAS  Google Scholar 

  222. Cromey DW (2010) Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images. Sci Eng Ethics 16:639–667

    Article  Google Scholar 

  223. Stylianou A, Gkretsi V, Stylianopoulos T (2018) Atomic force microscopy nano-characterization of 3D collagen gels with tunable stiffness. MethodsX 5:503–513

    Article  Google Scholar 

  224. Truong TV, Supatto W, Koos DS et al (2011) Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat Methods 8:757–760

    Article  CAS  Google Scholar 

  225. Lin P-Y, Hwang S-PL, Lee C-H et al (2021) Two-photon scanned light sheet fluorescence microscopy with axicon imaging for fast volumetric imaging. J Biomed Opt 26:116503

    Article  Google Scholar 

  226. Hanrahan N, Lane SIR, Johnson P et al (2020) Label-free and multimodal second harmonic generation light sheet microscopy. Biophysics. https://doi.org/10.1101/2020.09.07.284703

  227. Liu JTC, Glaser AK, Bera K et al (2021) Harnessing non-destructive 3D pathology. Nat Biomed Eng 5:203–218

    Article  Google Scholar 

  228. Loebinger MR, Kyrtatos PG, Turmaine M et al (2009) Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 69:8862–8867

    Article  CAS  Google Scholar 

  229. Farrar CT, Gale EM, Kennan R et al (2018) CM-101: type I collagen–targeted MR imaging probe for detection of liver fibrosis. Radiology 287:581–589

    Article  Google Scholar 

  230. Kennedy P, Taouli B (2020) Collagen-targeted MRI contrast agent for liver fibrosis detection. Nat Rev Gastroenterol Hepatol 17:201–202

    Article  CAS  Google Scholar 

  231. Schroeder AB, Karim A, Ocotl E et al (2020) Optical imaging of collagen fiber damage to assess thermally injured human skin. Wound Repair Regen 28:848–855

    Article  Google Scholar 

  232. Zackrisson S, van de Ven SMWY, Gambhir SS (2014) Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res 74:979–1004

    Article  CAS  Google Scholar 

  233. Wray P, Lin L, Hu P et al (2019) Photoacoustic computed tomography of human extremities. J Biomed Opt 24:026003

    Article  Google Scholar 

  234. Steinberg I, Huland DM, Vermesh O et al (2019) Photoacoustic clinical imaging. Photo-Dermatology 14:77–98

    Google Scholar 

  235. Park E, Lee Y-J, Lee C et al (2020) Effective photoacoustic absorption spectrum for collagen-based tissue imaging. J Biomed Opt 25:056002

    Article  Google Scholar 

  236. Regensburger AP, Fonteyne LM, Jüngert J et al (2019) Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat Med 25:1905–1915

    Article  CAS  Google Scholar 

  237. Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  CAS  Google Scholar 

  238. Maller O, Drain AP, Barrett AS et al (2021) Tumor-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nat Mater 20:548–559

    Article  CAS  Google Scholar 

  239. Cox BL, Erickson-Bhatt S, Szulczewski JM et al (2019) A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3D cell cultures. Magn Reson Med 81:3379–3391

    Article  CAS  Google Scholar 

  240. You S, Tu H, Chaney EJ et al (2018) Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat Commun 9:2125

    Article  Google Scholar 

  241. Chen S-Y (2009) In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy. IEEE J Sel Top Quantum Electron 16:478–492. https://doi.org/10.1109/JSTQE.2009.2031987

    Article  CAS  Google Scholar 

  242. Liao Y-H, Chen S-Y, Chou S-Y et al (2013) Determination of chronological aging parameters in epidermal keratinocytes by in vivo harmonic generation microscopy. Biomed Opt Express 4:77–88

    Article  Google Scholar 

  243. You S, Sun Y, Chaney EJ et al (2018) Slide-free virtual histochemistry (Part II): detection of field cancerization. Biomed Opt Express 9:5253–5268

    Article  Google Scholar 

  244. Datta R, Heaster TM, Sharick JT et al (2020) Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt 25:071203

    Article  CAS  Google Scholar 

  245. Jiang Y, Tomov I, Wang Y et al (2004) Second-harmonic optical coherence tomography. Opt Lett 29:1090–1092

    Article  Google Scholar 

  246. Applegate BE, Yang C, Rollins AM et al (2004) Polarization-resolved second-harmonic-generation optical coherence tomography in collagen. Opt Lett 29:2252–2254

    Article  Google Scholar 

  247. Chong SP, Lai T, Zhou Y et al (2013) Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging. Biomed Opt Express 4:1584–1594

    Article  Google Scholar 

  248. Welge WA, DeMarco AT, Watson JM et al (2014) Diagnostic potential of multimodal imaging of ovarian tissue using optical coherence tomography and second-harmonic generation microscopy. J Med Imaging (Bellingham) 1:025501

    Article  Google Scholar 

  249. Leitgeb RA, Baumann B (2018) Multimodal optical medical imaging concepts based on optical coherence tomography. Front Phys 6. https://doi.org/10.3389/fphy/2018.00114

  250. Graf BW, Boppart SA (2012) Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy. IEEE J Sel Top Quantum Electron 18:1280–1286

    Article  CAS  Google Scholar 

  251. Dones JM, Tanrikulu IC, Chacko JV et al (2019) Optimization of interstrand interactions enables burn detection with a collagen-mimetic peptide. Org Biomol Chem 17:9906–9912

    Article  CAS  Google Scholar 

  252. Bueno JM, Ávila FJ, Martínez-Ojeda RM et al (2020) Adaptive-optics polarization-sensitive second harmonic generation microscopy. In: 2020 22nd International Conference on Transparent Optical Networks (ICTON), pp 1–4

    Google Scholar 

  253. McConnell G, Trägårdh J, Amor R et al (2016) A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. elife 5:e18659

    Article  Google Scholar 

  254. Winter PW, York AG, Nogare DD et al (2014) Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1:181–191

    Article  Google Scholar 

  255. Urban BE, Yi J, Chen S et al (2015) Super-resolution two-photon microscopy via scanning patterned illumination. Phys Rev E Stat Nonlinear Soft Matter Phys 91:042703

    Article  Google Scholar 

  256. Johnson PB, Johnson PB, Karvounis A et al (2021) Superresolved polarization-enhanced second-harmonic generation for direct imaging of nanoscale changes in collagen architecture. Optica 8:674–685

    Article  Google Scholar 

  257. Wang L, Zheng X, Zhou J et al (2022) Improvement in resolution of multiphoton scanning structured illumination microscopy via harmonics. Engineering. https://doi.org/10.1016/j.eng.2021.12.010

  258. Majeed H (2018) Label-free breast histopathology using quantitative phase imaging. PhD thesis, University of Illinois at Urbana-Champaign

    Google Scholar 

  259. Fanous M, Keikhosravi A, Kajdacsy-Balla A et al (2020) Quantitative phase imaging of stromal prognostic markers in pancreatic ductal adenocarcinoma. Biomed Opt Express 11:1354–1364

    Article  Google Scholar 

  260. Costantini I, Cicchi R, Silvestri L et al (2019) In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed Opt Express 10:5251–5267

    Article  CAS  Google Scholar 

  261. Alali S, Vitkin IA (2015) Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment. J Biomed Opt 20:061104

    Article  Google Scholar 

  262. Han S, Makareeva E, Kuznetsova NV et al (2010) Molecular mechanism of Type I collagen Homotrimer resistance to mammalian collagenases. J Biol Chem 285:22276–22281

    Article  CAS  Google Scholar 

  263. Börner K, Maru JT, Goldstone RL (2004) The simultaneous evolution of author and paper networks. PNAS 101:5266–5273

    Article  Google Scholar 

  264. Karczewski KJ, Snyder MP (2018) Integrative omics for health and disease. Nat Rev Genet 19:299–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jayne Squirrell, Dr. Ellen Dobson, and Sam Griffin for very useful comments and edits on the manuscript. We acknowledge funding from NIH grants# U54CA268069 and R01CA238191. Figure 1 was created using BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin W. Eliceiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nelson, M.S. et al. (2023). Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment. In: Ursini-Siegel, J. (eds) The Tumor Microenvironment. Methods in Molecular Biology, vol 2614. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2914-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2914-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2913-0

  • Online ISBN: 978-1-0716-2914-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics