Skip to main content

Chondrogenic Differentiation of Human-Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Cartilage Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2598))

Abstract

The generation of large quantities of genetically defined human chondrocytes remains a critical step for the development of tissue engineering strategies for cartilage regeneration and high-throughput drug screening. This protocol describes chondrogenic differentiation of human-induced pluripotent stem cells (hiPSCs), which can undergo genetic modification and the capacity for extensive cell expansion. The hiPSCs are differentiated in a stepwise manner in monolayer through the mesodermal lineage for 12 days using defined growth factors and small molecules. This is followed by 28 days of chondrogenic differentiation in a 3D pellet culture system using transforming growth factor beta 3 and specific compounds to inhibit off-target differentiation. The 6-week protocol results in hiPSC-derived cartilaginous tissue that can be characterized by histology, immunohistochemistry, and gene expression or enzymatically digested to isolate chondrocyte-like cells. Investigators can use this protocol for experiments including genetic engineering, in vitro disease modeling, or tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mansour JM (2003) Biomechanics of Cartilage. In: Kinesiology: the mechanics and pathomechanics of human movement, vol 2e, pp 66–75

    Google Scholar 

  2. Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25(6):815–823. https://doi.org/10.1016/j.berh.2011.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  3. Antons J, Marascio MGM, Nohava J et al (2018) Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med 29(5):57. https://doi.org/10.1007/s10856-018-6066-0

    Article  CAS  PubMed  Google Scholar 

  4. Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. https://doi.org/10.1177/1941738109350438

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xia Y, Momot KI, Chen Z et al (2017) Chapter 1 Introduction to Cartilage. In: Biophysics and biochemistry of Cartilage by NMR and MRI. The Royal Society of Chemistry, pp 1–43. https://doi.org/10.1039/9781782623663-00001

    Chapter  Google Scholar 

  6. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57. https://doi.org/10.1615/critrevbiomedeng.v37.i1-2.10

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guilak F, Hung C (2005) Physical regulation of cartilage metabolism. In: Mow V, Huiskes R (eds) Basic orthopaedic biomechanics and mechanobiology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, pp 179–207

    Google Scholar 

  8. Shieh AC, Athanasiou KA (2003) Principles of cell mechanics for cartilage tissue engineering. Ann Biomed Eng 31(1):1–11. https://doi.org/10.1114/1.1535415

    Article  PubMed  Google Scholar 

  9. Sanchez-Adams J, Leddy HA, McNulty AL et al (2014) The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep 16(10):451. https://doi.org/10.1007/s11926-014-0451-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berenbaum F, Griffin TM, Liu-Bryan R (2017) Review: metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol 69(1):9–21. https://doi.org/10.1002/art.39842

    Article  PubMed  PubMed Central  Google Scholar 

  11. Breedveld FC (2004) Osteoarthritis--the impact of a serious disease. Rheumatology (Oxford) 43(Suppl 1):i4–i8. https://doi.org/10.1093/rheumatology/keh102

    Article  Google Scholar 

  12. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

    Article  CAS  PubMed  Google Scholar 

  13. Barbour KE, Moss S, Croft JB et al (2018) Geographic variations in arthritis prevalence, health-related characteristics, and management - United States, 2015. MMWR Surveill Summ 67(4):1–28. https://doi.org/10.15585/mmwr.ss6704a1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palazzo C, Nguyen C, Lefevre-Colau MM et al (2016) Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 59(3):134–138. https://doi.org/10.1016/j.rehab.2016.01.006

    Article  PubMed  Google Scholar 

  15. Willard VP, Diekman BO, Sanchez-Adams J et al (2014) Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol 66(11):3062–3072. https://doi.org/10.1002/art.38780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adkar SS, Brunger JM, Willard VP et al (2017) Genome engineering for personalized arthritis therapeutics. Trends Mol Med 23(10):917–931. https://doi.org/10.1016/j.molmed.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Connor SK, Katz DB, Oswald SJ et al (2020) Formation of Osteochondral organoids from murine induced Pluripotent stem cells. Tissue Eng Part A. https://doi.org/10.1089/ten.TEA.2020.0273

  18. Saitta B, Passarini J, Sareen D et al (2014) Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFbeta1. Stem Cells Dev 23(13):1464–1478. https://doi.org/10.1089/scd.2014.0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nur Patria Y, Stenta T, Lilianty J et al (2020) CRISPR/Cas9 gene editing of a SOX9 reporter human iPSC line to produce two TRPV4 patient heterozygous missense mutant iPSC lines, MCRIi001-A-3 (TRPV4 p.F273L) and MCRIi001-A-4 (TRPV4 p.P799L). Stem Cell Res 48:101942. https://doi.org/10.1016/j.scr.2020.101942

    Article  CAS  PubMed  Google Scholar 

  20. Liu H, Yang L, Yu FF et al (2017) The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthr Cartil 25(5):616–624. https://doi.org/10.1016/j.joca.2016.11.015

    Article  CAS  Google Scholar 

  21. Sanjurjo-Rodriguez C, Castro-Vinuelas R, Pineiro-Ramil M et al (2020) Versatility of induced Pluripotent stem cells (iPSCs) for improving the knowledge on musculoskeletal diseases. Int J Mol Sci 21(17). https://doi.org/10.3390/ijms21176124

  22. Yamashita A, Morioka M, Kishi H et al (2014) Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513(7519):507–511. https://doi.org/10.1038/nature13775

    Article  CAS  PubMed  Google Scholar 

  23. Matsumoto Y, Hayashi Y, Schlieve CR et al (2013) Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet J Rare Dis 8:190. https://doi.org/10.1186/1750-1172-8-190

    Article  PubMed  PubMed Central  Google Scholar 

  24. Miller EE, Kobayashi GS, Musso CM et al (2017) EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome. Hum Mol Genet 26(12):2177–2191. https://doi.org/10.1093/hmg/ddx078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okada M, Ikegawa S, Morioka M et al (2015) Modeling type II collagenopathy skeletal dysplasia by directed conversion and induced pluripotent stem cells. Hum Mol Genet 24(2):299–313. https://doi.org/10.1093/hmg/ddu444

    Article  CAS  PubMed  Google Scholar 

  26. Loh KM, Chen A, Koh PW et al (2016) Mapping the pairwise choices leading from Pluripotency to human bone, heart, and other mesoderm cell types. Cell 166(2):451–467. https://doi.org/10.1016/j.cell.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Umeda K, Zhao J, Simmons P et al (2012) Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Sci Rep 2:455. https://doi.org/10.1038/srep00455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oldershaw RA, Baxter MA, Lowe ET et al (2010) Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol 28(11):1187–1194. https://doi.org/10.1038/nbt.1683

    Article  CAS  PubMed  Google Scholar 

  29. Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(47):19172–19177. https://doi.org/10.1073/pnas.1210422109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Adkar SS, Wu CL, Willard VP et al (2019) Step-wise chondrogenesis of human induced Pluripotent stem cells and purification via a reporter Allele generated by CRISPR-Cas9 genome editing. Stem Cells 37(1):65–76. https://doi.org/10.1002/stem.2931

    Article  CAS  PubMed  Google Scholar 

  31. Lim J, Tu X, Choi K et al (2015) BMP-Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 400(1):132–138. https://doi.org/10.1016/j.ydbio.2015.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patil AS, Sable RB, Kothari RM (2011) An update on transforming growth factor-beta (TGF-beta): sources, types, functions and clinical applicability for cartilage/bone healing. J Cell Physiol 226(12):3094–3103. https://doi.org/10.1002/jcp.22698

    Article  CAS  PubMed  Google Scholar 

  33. Tang QO, Shakib K, Heliotis M et al (2009) TGF-beta3: a potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 9(6):689–701. https://doi.org/10.1517/14712590902936823

    Article  CAS  PubMed  Google Scholar 

  34. Craft AM, Rockel JS, Nartiss Y et al (2015) Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol 33(6):638–645. https://doi.org/10.1038/nbt.3210

    Article  CAS  PubMed  Google Scholar 

  35. Yamashita A, Morioka M, Yahara Y et al (2015) Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep 4(3):404–418. https://doi.org/10.1016/j.stemcr.2015.01.016

    Article  CAS  Google Scholar 

  36. Johnstone B, Hering TM, Caplan AI et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272. https://doi.org/10.1006/excr.1997.3858

    Article  CAS  PubMed  Google Scholar 

  37. Dicks A, Wu CL, Steward N et al (2020) Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res Ther 11(1):66. https://doi.org/10.1186/s13287-020-01597-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu CL, Dicks A, Steward N et al (2021) Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun 12(1):362. https://doi.org/10.1038/s41467-020-20598-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamashita A, Tamamura Y, Morioka M et al (2018) Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflamm Regen 38:17. https://doi.org/10.1186/s41232-018-0075-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murphy C, Mobasheri A, Tancos Z et al (2018) The potency of induced Pluripotent stem cells in Cartilage regeneration and osteoarthritis treatment. Adv Exp Med Biol 1079:55–68. https://doi.org/10.1007/5584_2017_141

    Article  CAS  PubMed  Google Scholar 

  41. Krishnan Y, Grodzinsky AJ (2018) Cartilage diseases. Matrix Biol 71-72:51–69. https://doi.org/10.1016/j.matbio.2018.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Musunuru K (2013) Genome editing of human pluripotent stem cells to generate human cellular disease models. Dis Model Mech 6(4):896–904. https://doi.org/10.1242/dmm.012054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yumlu S, Stumm J, Bashir S et al (2017) Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 121-122:29–44. https://doi.org/10.1016/j.ymeth.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  44. O’Conor CJ, Case N, Guilak F (2013) Mechanical regulation of chondrogenesis. Stem Cell Res Ther 4(4):61. https://doi.org/10.1186/scrt211

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brunger JM, Zutshi A, Willard VP et al (2017) Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs. Stem Cell Rep 8(5):1202–1213. https://doi.org/10.1016/j.stemcr.2017.03.022

    Article  CAS  Google Scholar 

  46. Pferdehirt L, Ross AK, Brunger JM et al (2019) A synthetic gene circuit for self-regulating delivery of biologic drugs in engineered tissues. Tissue Eng Part A 25(9–10):809–820. https://doi.org/10.1089/ten.TEA.2019.0027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nims RJ, Pferdehirt L, Ho NB et al (2021) A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci Adv 7(5). https://doi.org/10.1126/sciadv.abd9858

  48. Guilak F, Pferdehirt L, Ross AK et al (2019) Designer stem cells: genome engineering and the next generation of cell-based therapies. J Orthop Res 37(6):1287–1293. https://doi.org/10.1002/jor.24304

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tang R, Jing L, Willard VP et al (2018) Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 9(1):61. https://doi.org/10.1186/s13287-018-0797-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thirion S, Berenbaum F (2004) Culture and phenotyping of chondrocytes in primary culture. Methods Mol Med 100:1–14. https://doi.org/10.1385/1-59259-810-2:001

    Article  PubMed  Google Scholar 

  51. Nasrabadi D, Rezaeiani S, Eslaminejad MB et al (2018) Improved protocol for chondrogenic differentiation of bone marrow derived mesenchymal stem cells -effect of PTHrP and FGF-2 on TGFbeta1/BMP2-induced chondrocytes hypertrophy. Stem Cell Rev Rep 14(5):755–766. https://doi.org/10.1007/s12015-018-9816-y

    Article  CAS  PubMed  Google Scholar 

  52. Estes BT, Diekman BO, Gimble JM et al (2010) Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc 5(7):1294–1311. https://doi.org/10.1038/nprot.2010.81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Caplan AI (2017) Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 6(6):1445–1451. https://doi.org/10.1002/sctm.17-0051

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang YK, Ogando CR, Wang See C et al (2018) Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9(1):131. https://doi.org/10.1186/s13287-018-0876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Drela K, Stanaszek L, Nowakowski A et al (2019) Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int 2019:7012692. https://doi.org/10.1155/2019/7012692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  57. Nejadnik H, Diecke S, Lenkov OD et al (2015) Improved approach for chondrogenic differentiation of human induced pluripotent stem cells. Stem Cell Rev Rep 11(2):242–253. https://doi.org/10.1007/s12015-014-9581-5

    Article  CAS  PubMed  Google Scholar 

  58. Lee J, Taylor SE, Smeriglio P et al (2015) Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB J 29(8):3399–3410. https://doi.org/10.1096/fj.14-269720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suchorska WM, Augustyniak E, Richter M et al (2017) Comparison of four protocols to generate chondrocyte-like cells from human induced Pluripotent stem cells (hiPSCs). Stem Cell Rev Rep 13(2):299–308. https://doi.org/10.1007/s12015-016-9708-y

    Article  CAS  PubMed  Google Scholar 

  60. Lian Q, Zhang Y, Zhang J et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123. https://doi.org/10.1161/CIRCULATIONAHA.109.898312

    Article  PubMed  Google Scholar 

  61. Xu M, Shaw G, Murphy M et al (2019) Induced Pluripotent stem cell-derived mesenchymal stromal cells are functionally and genetically different from bone marrow-derived mesenchymal stromal cells. Stem Cells 37(6):754–765. https://doi.org/10.1002/stem.2993

    Article  CAS  PubMed  Google Scholar 

  62. Chen IP, Fukuda K, Fusaki N et al (2013) Induced pluripotent stem cell reprogramming by integration-free Sendai virus vectors from peripheral blood of patients with craniometaphyseal dysplasia. Cell Reprogram 15(6):503–513. https://doi.org/10.1089/cell.2013.0037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crowe AR, Yue W (2019) Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc 9(24):10.21769/BioProtoc.3465

    Article  Google Scholar 

  64. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582. https://doi.org/10.1038/nprot.2006.236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shriners Hospitals for Children, Nancy Taylor Foundation, Arthritis Foundation, NIH (AG46927, AG15768, AR075899, AR072999, AR074992, AR073752, AR080902, T32 DK108742, T32 EB018266), and Taiwan GSSA Scholarship.

Conflicts of Interest

FG is an employee of Cytex Therapeutics, Inc. The other authors declare that they have no competing interests.

Author Contribution Statement

ARD, NS, CLW, and FG were involved in the development, testing, and troubleshooting of these protocols and the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farshid Guilak or Chia-Lung Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dicks, A.R., Steward, N., Guilak, F., Wu, CL. (2023). Chondrogenic Differentiation of Human-Induced Pluripotent Stem Cells. In: Stoddart, M.J., Della Bella, E., Armiento, A.R. (eds) Cartilage Tissue Engineering. Methods in Molecular Biology, vol 2598. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2839-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2839-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2838-6

  • Online ISBN: 978-1-0716-2839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics