Skip to main content

Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo

  • Protocol
  • First Online:
Type-1 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2592))

Abstract

Noninvasive quantitative imaging of beta-cells can provide information on changes in cellular transporters, receptors, and signaling proteins that may affect function and/or loss of mass, both of which contribute to the loss of insulin secretion and glucose regulation of patients with type 1 or type 2 diabetes (T1D/T2D). We have developed and optimized the use of two positron emission tomography (PET) radioligands, [18F]FP-(+)-DTBZ and [11C](+)-PHNO, targeting beta-cell VMAT2 and dopamine (D2/D3) receptors, respectively. Here we describe our optimized methodology for the clinical use of these two tracers for quantitative PET imaging of beta-cell biomarkers in vivo. We also briefly discuss our previous results and their implications and value towards extending the use of PET radioligand beyond the original goal of quantitative imaging of beta-cell mass to the potential to provide insight into the biology of beta-cell loss of mass and/or function and to evaluate the efficacy of therapeutics to prevent or restore functional beta-cell mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anlauf M, Eissele R, Schäfer MK-H, Eiden LE, Arnold R, Pauser U et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040

    Article  CAS  Google Scholar 

  2. Maffei A, Liu Z, Witkowski P, Moschella F, Pozzo GDEL, Liu E et al (2004) Identification of tissue-restricted transcripts in human islets. Endocrinology 145:4513–4521

    Article  CAS  Google Scholar 

  3. Saisho Y, Harris PE, Butler AE, Galasso R, Gurlo T, Rizza RA et al (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39:543–551

    Article  CAS  Google Scholar 

  4. Freeby M, Ichise M, Harris PE (2012) Vesicular monoamine transporter, type 2 (vmat2) expression as it compares to insulin and pancreatic polypeptide in the head, body and tail of the human pancreas. Islets 4:393–397

    Article  Google Scholar 

  5. Kung M-P, Hou C, Lieberman BP, Oya S, Ponde DE, Blankemeyer E et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176

    Article  CAS  Google Scholar 

  6. Eriksson O, Jahan M, Johnström P, Korsgren O, Sundin A, Halldin C et al (2010) In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol 37:357–363

    Article  CAS  Google Scholar 

  7. Normandin MD, Petersen KF, Ding Y-S, Lin S-F, Naik S, Fowles K et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18f-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–916

    Article  CAS  Google Scholar 

  8. Goland R, Freeby M, Parsey R, Saisho Y, Kumar D, Simpson N et al (2009) 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50:382–389

    Article  CAS  Google Scholar 

  9. Bini J, Naganawa M, Nabulsi NB, Huang YH, Ropchan J, Lim K et al (2018) Evaluation of PET brain radioligands for imaging pancreatic β-cell mass: potential utility of 11 C-PHNO. J Nucl Med 59:1249–1254

    Article  CAS  Google Scholar 

  10. Korner J, Cline GW, Slifstein M, Barba P, Rayat GR, Febres G et al (2019) A role for foregut tyrosine metabolism in glucose tolerance. Mol Metab 23:37–50

    Article  CAS  Google Scholar 

  11. Ustione A, Piston DW, Harris PE (2013) Minireview: dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol 27:1198–2107

    Article  CAS  Google Scholar 

  12. Bini J, Sanchez-Rangel E, Gallezot J-D, Naganawa M, Nabulsi NB, Lim K et al (2020) PET imaging of pancreatic dopamine D3/D2 receptor density with 11 C (+)-PHNO in Type-1 diabetes mellitus. J Nucl Med 61:570–576

    Article  CAS  Google Scholar 

  13. Eriksson O, Espes D, Selvaraju RK, Jansson E, Antoni G, Sorensen J et al (2014) Positron emission tomography ligand [11C]5-hydroxy-tryptophan can be used as a surrogate marker for the human endocrine pancreas. Diabetes 63:3428–3437

    Article  CAS  Google Scholar 

  14. Brom M, Woliner-Van Der Weg W, Joosten L, Frielink C, Bouckenooghe T, Rijken P et al (2014) Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin. Diabetologia 57:950–959

    Article  CAS  Google Scholar 

  15. Saisho Y, Butler AE, Manesso E, Elashoff D, Rizza RA, Butler PC (2013) β-Cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 36:111–117

    Article  Google Scholar 

  16. Gianani R, Campbell-Thompson M, Sarkar SA, Wasserfall C, Pugliese A, Solis JM et al (2010) Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia 53:690–698

    Article  CAS  Google Scholar 

  17. Oram RA, Jones AG, Besser REJ, Knight BA, Shields BM, Brown RJ et al (2014) The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia 57:187–191

    Article  CAS  Google Scholar 

  18. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ et al (2019) An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med 381:603–613

    Article  CAS  Google Scholar 

  19. Cline GW, Naganawa M, Chen L, Chidsey K, Carvajal-gonzalez S, Pawlak S et al (2018) Decreased VMAT2 in the pancreas of humans with type 2 diabetes mellitus measured in vivo by PET imaging. Diabetologia 61:2598–2607

    Article  CAS  Google Scholar 

  20. Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 150:1223–1234

    Article  CAS  Google Scholar 

  21. Diedisheim M, Oshima M, Albagli O, Huldt CW, Ahlstedt I, Clausen M et al (2018) Modeling human pancreatic beta cell dedifferentiation. Mol Metab 10:74–86

    Article  CAS  Google Scholar 

  22. Pajvani UB, Accili D (2015) The new biology of diabetes. Diabetologia 58:2459–2468

    Article  CAS  Google Scholar 

  23. Naganawa M, Lin S-F, Lim K, Labaree D, Ropchan J, Harris P et al (2016) Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of (18)F-FP-DTBZ in baboons. Nucl Med Biol 43:743–751

    Article  CAS  Google Scholar 

  24. Wilson AA, McCormick P, Kapur S, Willeit M, Garcia A, Hussey D et al (2005) Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6, 10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. J Med Chem 48:4153–4160

    Article  CAS  Google Scholar 

  25. Söderberg M (2016) Overview, practicaltips and potential pitfalls of using automatic exposure control in CT: siemens CARE Dose 4D. Radiat Prot Dosimetry 169:84–91

    Article  Google Scholar 

  26. Naganawa M, Lim K, Nabulsi NB, Lin S-f, Labaree D, Ropchan J et al (2018) Evaluation of pancreatic VMAT2 binding with active and inactive enantiomers of [18F]FP-DTBZ in healthy subjects and patients with type 1 diabetes. Mol Imaging Biol 20:835–485

    Article  CAS  Google Scholar 

  27. Mizrahi R (2010) Side effects profile in humans of (11)C-(+)-PHNO, a dopamine D(2/3) agonist ligand for PET. J Nucl Med 51:496–498

    Article  Google Scholar 

  28. Cline GW, McCarthy TJ, Carson RE, Calle RA (2018) Clinical and scientific value in the pursuit of quantification of beta cells in the pancreas by PET imaging. Diabetologia 61:2671–2673

    Article  CAS  Google Scholar 

  29. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  Google Scholar 

  30. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  CAS  Google Scholar 

  31. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  CAS  Google Scholar 

  32. Van Der Weerdt AP, Klein LJ, Visser CA, Visser FC, Lammertsma AA (2002) Use of arterialised venous instead of arterial blood for measurement of myocardial glucose metabolism during euglycaemic-hyperinsulinaemic clamping. Eur J Nucl Med Mol Imaging 29:663–669

    Article  Google Scholar 

  33. Yu Y, Chan C, Ma T, Liu Y, Gallezot JD, Naganawa M et al (2016) Event-by-event continuous respiratory motion correction for dynamic PET imaging. J Nucl Med 57:1084–1090

    Article  CAS  Google Scholar 

  34. Ren S, Jin X, Chan C, Jian Y, Mulnix T, Liu C et al (2017) Data-driven event-by-event respiratory motion correction using TOF PET list-mode centroid of distribution. Phys Med Biol 62:4741–4755

    Article  Google Scholar 

  35. Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J et al (2019) Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Phys Med Biol 64:065002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a training grant from the NIDDK (K01DK118005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Bini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bini, J., Carson, R.E., Cline, G.W. (2023). Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo. In: Moore, A., Wang, P. (eds) Type-1 Diabetes. Methods in Molecular Biology, vol 2592. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2807-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2807-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2806-5

  • Online ISBN: 978-1-0716-2807-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics