Skip to main content

In Vitro Assay for the Assessment of Oxygen Depletion Triggers in Human Cell Lines, Associated with Improving Responses to Cancer Therapy

  • Protocol
  • First Online:
Gene, Drug, and Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2575))

  • 903 Accesses

Abstract

Tumors are usually associated with oxygen-deficient regions (hypoxia) which results from reduced and disorganized intratumoral vasculature, increased diffusion distances, and growing tumor masses. The proteomic and metabolomic landscape of the hypoxic cells is reprogrammed through hypoxia-induced transcription factor 1 which is activated in hypoxic conditions and is inactive when oxygen is abundant. This transcription factor has also been shown to inhibit or even reverse cell differentiation. Hypoxia impedes chemotherapy as it hampers the formation of cytotoxic free radicals due to the lesser availability of molecular oxygen. The metastatic and invasive attributes of cancer cells in hypoxic conditions are exacerbated, which results in poor therapeutic outcomes. Various cell-based assays for measuring hypoxia have been developed which give an estimate of the hypoxic state of cancer cells. Prior knowledge of these assays will improve the efficacy of the treatment regimens for cancers. This article provides exhaustive information on the hypoxia-based assays which are sensitive, robust, reliable, and give easy readout with choice of cell type for these assays may be dictated by the procedural or endpoint selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92. https://doi.org/10.2147/HP.S93413

    Article  Google Scholar 

  2. Berchner-Pfannschmidt U, Frede S, Wotzlaw C, Fandrey J (2008) Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur Respir J 32(1):210–217. https://doi.org/10.1183/09031936.00013408

    Article  CAS  PubMed  Google Scholar 

  3. Chan DA, Sutphin PD, Yen SE, Giaccia AJ (2005) Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol 25(15):6415–6426. https://doi.org/10.1128/MCB.25.15.6415-6426.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang D, Tian HY, Zang TN, Li M, Zhou Y, Zhang JF (2017) Hypoxia imaging in cells and tumor tissues using a highly selective fluorescent nitroreductase probe. Sci Rep 7(1):9174. https://doi.org/10.1038/s41598-017-09525-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Donovan L, Welford SM, Haaga J, LaManna J, Strohl KP (2010) Hypoxia--implications for pharmaceutical developments. Sleep Breath 14(4):291–298. https://doi.org/10.1007/s11325-010-0368-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mirabello V, Cortezon-Tamarit F, Pascu SI (2018) Oxygen sensing, hypoxia tracing and in vivo imaging with functional metalloprobes for the early detection of non-communicable diseases. Front Chem 6:27. https://doi.org/10.3389/fchem.2018.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo S, Zou R, Wu J, Landry MP (2017) A probe for the detection of hypoxic cancer cells. ACS Sens 2(8):1139–1145. https://doi.org/10.1021/acssensors.7b00171

    Article  CAS  PubMed  Google Scholar 

  8. Komatsu H, Harada H, Tanabe K, Hiraoka M, Nishimoto S-i (2010) Indolequinone-rhodol conjugate as a fluorescent probe for hypoxic cells: enzymatic activation and fluorescence properties. Med Chem Comm 1(1):50–53. https://doi.org/10.1039/C0MD00024H

    Article  CAS  Google Scholar 

  9. Nakata E, Yukimachi Y, Kariyazono H, Im S, Abe C, Uto Y, Maezawa H, Hashimoto T, Okamoto Y, Hori H (2009) Design of a bioreductively-activated fluorescent pH probe for tumor hypoxia imaging. Bioorg Med Chem 17(19):6952–6958. https://doi.org/10.1016/j.bmc.2009.08.037

    Article  CAS  PubMed  Google Scholar 

  10. Piao W, Tsuda S, Tanaka Y, Maeda S, Liu F, Takahashi S, Kushida Y, Komatsu T, Ueno T, Terai T, Nakazawa T, Uchiyama M, Morokuma K, Nagano T, Hanaoka K (2013) Development of azo-based fluorescent probes to detect different levels of hypoxia. Angew Chem Int Ed Engl 52(49):13028–13032. https://doi.org/10.1002/anie.201305784

    Article  CAS  PubMed  Google Scholar 

  11. Bae J, McNamara LE, Nael MA, Mahdi F, Doerksen RJ, Bidwell GL 3rd, Hammer NI, Jo S (2015) Nitroreductase-triggered activation of a novel caged fluorescent probe obtained from methylene blue. Chem Commun (Camb) 51(64):12787–12790. https://doi.org/10.1039/c5cc03824c

    Article  CAS  Google Scholar 

  12. Iglesias P, Penas C, Barral-Cagiao L, Pazos E, Costoya JA (2019) A bio-inspired hypoxia sensor using HIF1a-oxygen-dependent degradation domain. Sci Rep 9(1):7117. https://doi.org/10.1038/s41598-019-43618-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iglesias P, Costoya JA (2009) A novel BRET-based genetically encoded biosensor for functional imaging of hypoxia. Biosens Bioelectron 24(10):3126–3130. https://doi.org/10.1016/j.bios.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Li X, Gao X, Zhang Y, Shi W, Ma H (2013) Nitroreductase detection and hypoxic tumor cell imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one. Anal Chem 85(8):3926–3932. https://doi.org/10.1021/ac400750r

    Article  CAS  PubMed  Google Scholar 

  15. Guo T, Cui L, Shen J, Zhu W, Xu Y, Qian X (2013) A highly sensitive long-wavelength fluorescence probe for nitroreductase and hypoxia: selective detection and quantification. Chem Commun (Camb) 49(92):10820–10822. https://doi.org/10.1039/c3cc45367g

    Article  CAS  Google Scholar 

  16. Yuan J, Xu Y-Q, Zhou N-N, Wang R, Qian X-H, Xu Y-F (2014) A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Adv 4(99):56207–56210. https://doi.org/10.1039/C4RA10044A

    Article  CAS  Google Scholar 

  17. Cui L, Zhong Y, Zhu W, Xu Y, Du Q, Wang X, Qian X, Xiao Y (2011) A new prodrug-derived ratiometric fluorescent probe for hypoxia: high selectivity of nitroreductase and imaging in tumor cell. Org Lett 13(5):928–931. https://doi.org/10.1021/ol102975t

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Liu HW, Hu XX, Li J, Liang LH, Zhang XB, Tan W (2015) Efficient two-photon fluorescent probe for Nitroreductase detection and hypoxia imaging in tumor cells and tissues. Anal Chem 87(23):11832–11839. https://doi.org/10.1021/acs.analchem.5b03336

    Article  CAS  PubMed  Google Scholar 

  19. Ryan LS, Gerberich J, Cao J, An W, Jenkins BA, Mason RP, Lippert AR (2019) Kinetics-based measurement of hypoxia in living cells and animals using an acetoxymethyl ester chemiluminescent probe. ACS Sens 4(5):1391–1398. https://doi.org/10.1021/acssensors.9b00360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue R, Nelson MT, Teixeira SA, Viapiano MS, Lannutti JJ (2016) Cancer cell aggregate hypoxia visualized in vitro via biocompatible fiber sensors. Biomaterials 76:208–217. https://doi.org/10.1016/j.biomaterials.2015.10.055

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Saudagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tiwari, K., Kumar, R., Saha, G., Saudagar, P. (2023). In Vitro Assay for the Assessment of Oxygen Depletion Triggers in Human Cell Lines, Associated with Improving Responses to Cancer Therapy. In: Pereira, G.C. (eds) Gene, Drug, and Tissue Engineering. Methods in Molecular Biology, vol 2575. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2716-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2716-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2715-0

  • Online ISBN: 978-1-0716-2716-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics