Skip to main content

Auto-DRRAFTER: Automated RNA Modeling Based on Cryo-EM Density

  • Protocol
  • First Online:
RNA Structure and Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2568))

Abstract

RNA three-dimensional structures provide rich and vital information for understanding their functions. Recent advances in cryogenic electron microscopy (cryo-EM) allow structure determination of RNAs and ribonucleoprotein (RNP) complexes. However, limited global and local resolutions of RNA cryo-EM maps pose great challenges in tracing RNA coordinates. The Rosetta-based “auto-DRRAFTER” method builds RNA models into moderate-resolution RNA cryo-EM density as part of the Ribosolve pipeline. Here, we describe a step-by-step protocol for auto-DRRAFTER using a glycine riboswitch from Fusobacterium nucleatum as an example. Successful implementation of this protocol allows automated RNA modeling into RNA cryo-EM density, accelerating our understanding of RNA structure–function relationships. Input and output files are being made available at https://github.com/auto-DRRAFTER/springer-chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins JF, Gesteland R, Cech T (2011) RNA worlds: from life’s origins to diversity in gene regulation. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  2. Cech Thomas R, Steitz, Joan A (2014) The noncoding RNA revolution – trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  Google Scholar 

  3. Blundell TL, Chaplin AK (2021) The resolution revolution in X-ray diffraction, Cryo-EM and other technologies. Prog Biophys Mol Biol 160:2–4

    Article  CAS  Google Scholar 

  4. Watson ZL, Ward FR, Meheust R et al (2020) Structure of the bacterial ribosome at 2 A resolution. elife 9:e60482

    Article  CAS  Google Scholar 

  5. Su Z, Zhang K, Kappel K et al (2021) Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 A resolution. Nature 96(7873):603–607

    Article  Google Scholar 

  6. Schlick T, Pyle AM (2017) Opportunities and challenges in RNA structural modeling and design. Biophys J 113:225–234

    Article  CAS  Google Scholar 

  7. Sripakdeevong P, Beauchamp K, Das R (2012) Why can’t we predict RNA structure at atomic resolution? In: Leontis N, Westhof E (eds) RNA 3D structure analysis and prediction. Springer, Berlin/Heidelberg

    Google Scholar 

  8. Zhang J, Ferre-D’amare AR (2014) New molecular engineering approaches for crystallographic studies of large RNAs. Curr Opin Struct Biol 26:9–15

    Article  Google Scholar 

  9. Zhang H, Keane SC (2019) Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. Wiley Interdiscip Rev RNA 10:e1541

    Article  Google Scholar 

  10. Hura GL, Menon AL, Hammel M et al (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–612

    Article  CAS  Google Scholar 

  11. Kappel K, Zhang K, Su Z et al (2020) Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nat Methods 17:699–707

    Article  CAS  Google Scholar 

  12. Jossinet F, Ludwig TE, Westhof E (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26:2057–2059

    Article  CAS  Google Scholar 

  13. Parisien M, Major F (2008) The MC-fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    Article  CAS  Google Scholar 

  14. Xia Z, Bell DR, Shi Y et al (2013) RNA 3D structure prediction by using a coarse-grained model and experimental data. J Phys Chem B 117:3135–3144

    Article  CAS  Google Scholar 

  15. Liebschner D, Afonine PV, Baker ML et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877

    Article  CAS  Google Scholar 

  16. Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci USA 104:14664–14669

    Article  CAS  Google Scholar 

  17. Xu X, Zhao C, Chen SJ (2019) VfoldLA: a web server for loop assembly-based prediction of putative 3D RNA structures. J Struct Biol 207:235–240

    Article  CAS  Google Scholar 

  18. Popenda M, Szachniuk M, Antczak M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112

    Article  CAS  Google Scholar 

  19. Jonikas MA, Radmer RJ, Laederach A et al (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199

    Article  CAS  Google Scholar 

  20. Boniecki MJ, Lach G, Dawson WK et al (2016) SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 44:e63

    Article  Google Scholar 

  21. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952

    Article  CAS  Google Scholar 

  22. Miao Z, Adamiak RW, Antczak M et al (2020) RNA-puzzles round IV: 3D structure predictions of four ribozymes and two aptamers. RNA 26:982–995

    Article  CAS  Google Scholar 

  23. Li B, Cao Y, Westhof E et al (2020) Advances in RNA 3D structure modeling using experimental data. Front Genet 11:574485

    Article  CAS  Google Scholar 

  24. Townshend RJL, Eismann S, Watkins AM et al (2021) Geometric deep learning of RNA structure. Science 373:1047–1051

    Article  CAS  Google Scholar 

  25. Kappel K, Liu S, Larsen KP et al (2018) De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat Methods 15:947–954

    Article  CAS  Google Scholar 

  26. Merino EJ, Wilkinson KA, Coughlan JL et al (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    Article  CAS  Google Scholar 

  27. Peattie DA, Gilbert W (1980) Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci USA 77:4679–4682

    Article  CAS  Google Scholar 

  28. Cordero P, Kladwang W, Vanlang CC et al (2014) The mutate-and-map protocol for inferring base pairs in structured RNA. Methods Mol Biol 1086:53–77

    Article  CAS  Google Scholar 

  29. Cheng CY, Kladwang W, Yesselman JD et al (2017) RNA structure inference through chemical mapping after accidental or intentional mutations. Proc Natl Acad Sci USA 114:9876–9881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Computational tasks were performed on SKLB Duyu high performance computing center in Sichuan University and Sherlock 2.0 high performance computing cluster in Stanford University. This work was supported by Ministry of Science and Technology of China (MoST) 2021YFA1301900, Natural Science Foundation of China (NSFC) 82041016 and 32070049, and Sichuan University start-up funding 20822041D4057 to Z.S., the National Science Foundation (NSF) Graduate Research Fellowship award DGE-1656518 to R.R., the Gerald J. Lieberman Fellowship to R.R., the Rosetta REU NSF award 1950697 to P.P., and the National Institutes of Health R35 grant GM122579 to P.P. and R.D.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoming Su or Rhiju Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, H. et al. (2023). Auto-DRRAFTER: Automated RNA Modeling Based on Cryo-EM Density. In: Ding, J., Stagno, J.R., Wang, YX. (eds) RNA Structure and Dynamics. Methods in Molecular Biology, vol 2568. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2687-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2687-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2686-3

  • Online ISBN: 978-1-0716-2687-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics