Skip to main content

Purinergic Signaling and Its Role in Mobilization of Bone Marrow Stem Cells

  • Protocol
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2567))

Abstract

Mobilization or egress of stem cells from bone marrow (BM) into peripheral blood (PB) is an evolutionary preserved and important mechanism in an organism for self-defense and regeneration. BM-derived stem cells circulate always at steady-state conditions in PB, and their number increases during stress situations related to (a) infections, (b) tissue organ injury, (c) stress, and (d) strenuous exercise. Stem cells also show a circadian pattern of their PB circulating level with peak in early morning hours and nadir late at night. The number of circulating in PB stem cells could be pharmacologically increased after administration of some drugs such as cytokine granulocyte colony-stimulating factor (G-CSF) or small molecular antagonist of CXCR4 receptor AMD3100 (Plerixafor) that promote their egress from BM into PB and lymphatic vessels. Circulating can be isolated from PB for transplantation purposes by leukapheresis. This important homeostatic mechanism is governed by several intrinsic complementary pathways. In this chapter, we will discuss the role of purinergic signaling and extracellular nucleotides in regulating this process and review experimental strategies to study their involvement in mobilization of various types of stem cells that reside in murine BM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoggatt J, Pelus LM (2011) Many mechanisms mediating mobilization: an alliterative review. Curr Opin Hematol 18:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ratajczak MZ (2015) A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 29:776–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Golan K, Vagima Y, Ludin A et al (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119:2478–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Massberg S, Schaerli P, Knezevic-Maramica I et al (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ratajczak MZ, Lee H, Wysoczynski M et al (2010) Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24:976–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoggatt J, Pelus LM (2010) Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 24:1993–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia 16:1992–2003

    Article  CAS  PubMed  Google Scholar 

  9. Adamiak M, Borkowska S, Wysoczynski M et al (2015) Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow. Oncotarget 6:18819–18828

    Article  PubMed  PubMed Central  Google Scholar 

  10. Adamiak M, Bujko K, Brzezniakiewicz-Janus K et al (2019) The inhibition of CD39 and CD73 cell surface ectonucleotidases by small molecular inhibitors enhances the mobilization of bone marrow residing stem cells by decreasing the extracellular level of adenosine. Stem Cell Rev Rep 15:892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 36:697–705

    Article  CAS  PubMed  Google Scholar 

  12. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:2398212818817494

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di Virgilio F, Dal Ben D, Sarti AC et al (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31

    Article  PubMed  Google Scholar 

  14. Rossi L, Salvestrini V, Ferrari D et al (2012) The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood 120:2365–2375

    Article  CAS  PubMed  Google Scholar 

  15. Ratajczak MZ, Adamiak M, Kucia M et al (2018) The emerging link between the complement cascade and purinergic signaling in stress hematopoiesis. Front Immunol 9:1295

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jing L, Tamplin OJ, Chen MJ et al (2015) Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. J Exp Med 212:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeiser R, Robson SC, Vaikunthanathan T et al (2016) Unlocking the potential of purinergic signaling in transplantation. Am J Transplant 16:2781–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 6:171

    Article  PubMed  PubMed Central  Google Scholar 

  19. Praetorius HA, Leipziger J (2009) ATP release from non-excitable cells. Purinergic Signal 5:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kronlage M, Song J, Sorokin L et al (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3:ra55

    Article  PubMed  Google Scholar 

  21. Mendez-Ferrer S, Chow A, Merad M et al (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mobius-Winkler S, Hilberg T, Menzel K et al (1985) (2009) Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 107:1943–1950

    Article  Google Scholar 

  23. Adamiak M, Ciechanowicz A, Skoda M et al (2020) Novel evidence that purinergic signaling – Nlrp3 inflammasome axis regulates circadian rhythm of hematopoietic stem/progenitor cells circulation in peripheral blood. Stem Cell Rev Rep 16:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ratajczak MZ, Adamiak M, Thapa A et al (2019) NLRP3 inflammasome couples purinergic signaling with activation of the complement cascade for the optimal release of cells from bone marrow. Leukemia 33:815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karpova D, Rettig MP, DiPersio JF (2019) Mobilized peripheral blood: an updated perspective. F1000Res 8:2125

    Article  CAS  Google Scholar 

  26. Miyazaki K, Suzuki K (2018) Poor mobilizer and its countermeasures. Transfus Apher Sci 57:623–627

    Article  PubMed  Google Scholar 

  27. Huang X, Guo B, Capitano M et al (2019) Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation. F1000Res 8:1833

    Article  Google Scholar 

  28. Ballen K (2017) Umbilical cord blood transplantation: challenges and future directions. Stem Cells Transl Med 6:1312–1315

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hoggatt J, Singh P, Tate TA et al (2018) Rapid mobilization reveals a highly engraftable hematopoietic stem cell. Cell 172:191–204.e10

    Article  CAS  PubMed  Google Scholar 

  30. Levesque JP, Hendy J, Takamatsu Y et al (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bonig H, Papayannopoulou T (2013) Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 27:24–31

    Article  CAS  PubMed  Google Scholar 

  32. Karpova D, Rettig MP, Ritchey J et al (2019) Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 129:2745–2759

    Article  PubMed  PubMed Central  Google Scholar 

  33. Winkler IG, Pettit AR, Raggatt LJ et al (2012) Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 26:1594–1601

    Article  CAS  PubMed  Google Scholar 

  34. Juarez JG, Harun N, Thien M et al (2012) Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 119:707–716

    Article  CAS  PubMed  Google Scholar 

  35. Borkowska S, Suszynska M, Mierzejewska K et al (2014) Novel evidence that crosstalk between the complement, coagulation and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs). Leukemia 28:2148–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoggatt J, Mohammad KS, Singh P et al (2013) Prostaglandin E2 enhances long-term repopulation but does not permanently alter inherent stem cell competitiveness. Blood 122:2997–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pruijt JF, Verzaal P, van Os R et al (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci U S A 99:6228–6233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adamiak M, Bujko K, Cymer M et al (2018) Novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia 32:1920–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Woehrle T, Yip L, Elkhal A et al (2010) Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116:3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burnstock G (2016) P2X ion channel receptors and inflammation. Purinergic Signal 12:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Volonte C, Apolloni S, Skaper SD et al (2012) P2X7 receptors: channels, pores and more. CNS Neurol Disord Drug Targets 11:705–721

    Article  CAS  PubMed  Google Scholar 

  42. Ratajczak MZ, Bujko K, Cymer M et al (2020) The Nlrp3 inflammasome as a "rising star" in studies of normal and malignant hematopoiesis. Leukemia 34:1512–1523

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cao YA, Wagers AJ, Karsunky H et al (2008) Heme oxygenase-1 deficiency leads to disrupted response to acute stress in stem cells and progenitors. Blood 112:4494–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wysoczynski M, Ratajczak J, Pedziwiatr D et al (2015) Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells. Stem Cell Rev Rep 11:110–118

    Article  CAS  PubMed  Google Scholar 

  45. Lenkiewicz AM, Adamiak M, Thapa A et al (2019) The Nlrp3 inflammasome orchestrates mobilization of bone marrow-residing stem cells into peripheral blood. Stem Cell Rev Rep 15:391–403

    Article  CAS  PubMed  Google Scholar 

  46. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  47. Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52

    Article  CAS  PubMed  Google Scholar 

  48. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  49. Kucia M, Reca R, Campbell FR et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  CAS  PubMed  Google Scholar 

  50. Kucia MJ, Wysoczynski M, Wu W et al (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26:2083–2092

    Article  CAS  PubMed  Google Scholar 

  51. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants 2R01 DK074720, Stella and Henry Hoenig Endowment, OPUS grant UMO-2018/29/B/NZ4/01470 to MZR, and OPUS grant 2016/21/B/NZ4/00201 to MK. AT was supported by NIH T32 HL134644 to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Kucia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suszynska, M. et al. (2023). Purinergic Signaling and Its Role in Mobilization of Bone Marrow Stem Cells. In: Pelus, L.M., Hoggatt, J. (eds) Hematopoietic Stem Cells. Methods in Molecular Biology, vol 2567. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2679-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2679-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2678-8

  • Online ISBN: 978-1-0716-2679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics