Skip to main content

DNA Visualization Using Fluorescent Proteins

  • Protocol
  • First Online:
Fluorescent Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2564))

  • 1561 Accesses

Abstract

DNA binding fluorescent proteins are a powerful tool for single-molecule visualization. In this chapter, we discuss a protocol for the synthesis of DNA binding fluorescent proteins and visualization of single DNA molecules. This chapter includes stepwise methods for molecular cloning, reversible staining, two-color staining, sequence-specific staining, and microscopic visualization of single DNA molecules in a microfluidic device. This content will be useful for DNA characterization using DNA binding fluorescent proteins and its visualization at the single-molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakadamyali M, Cosma MP (2015) Advanced microscopy methods for visualizing chromatin structure. FEBS Lett 589(20):3023–3030

    Article  CAS  Google Scholar 

  2. Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakoy A, Betzig E, Kapoor TM (2019) High-resolution imaging reveals how the spindle midzone impacts chromosome movement. J Cell Biol 218(8):2529–2544

    Article  Google Scholar 

  3. Krutilina RI, Oei SL, Buchlow G, Yau PM, Zalensky AO, Zalenskaya IA, Bradbury EM, Tomilin NV (2001) A negative regulator of telomere-length protein TRF1 is associated with interstitial (TTAGGG)n blocks in immortal Chinese hamster ovary cells. Biochem Biophys Res Commun 280(2):471–475

    Article  CAS  Google Scholar 

  4. Lawrimore J, Bloom KS, Salmon ED (2011) Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. J Cell Biol 195(4):573–582

    Article  CAS  Google Scholar 

  5. Mora-Bermudez F, Ellenberg J (2007) Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 41(2):158–167

    Article  CAS  Google Scholar 

  6. Bystricky K (2015) Chromosome dynamics and folding in eukaryotes: insights from live cell microscopy. FEBS Lett 589(20 Pt A):3014–3022. https://doi.org/10.1016/j.febslet.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  7. Trinkle-Mulcahy L, Lamond AI (2007) Toward a high-resolution view of nuclear dynamics. Science 318(5855):1402–1407

    Article  CAS  Google Scholar 

  8. Gasser SM (2002) Nuclear architecture – visualizing chromatin dynamics in interphase nuclei. Science 296(5572):1412–1416

    Article  CAS  Google Scholar 

  9. Klotz AR, Narsimhan V, Soh BW, Doyle PS (2017) Dynamics of DNA knots during chain relaxation. Macromolecules 50(10):4075–4083

    Article  Google Scholar 

  10. Lee S, Lee Y, Kim Y, Wang C, Park J, Jung GY, Chen YL, Chang R, Ikeda S, Sugiyama H, Jo K (2019) Nanochannel-confined TAMRA-polypyrrole stained DNA stretching by varying the ionic strength from micromolar to millimolar concentrations. Polymers-Basel 11(1):15

    Google Scholar 

  11. Lee J, Kim S, Jeong H, Jung GY, Chang R, Chen YL, Jo K (2014) Nanoslit confined DNA at low ionic strengths. ACS Macro Lett 3(9):926–930. https://doi.org/10.1021/Mz500396t

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Oh Y, Lee J, Choe S, Lim S, Lee HS, Jo K, Schwartz DC (2016) DNA binding fluorescent proteins for the direct visualization of large DNA molecules. Nucleic Acids Res 44(1):e6–e6

    Article  Google Scholar 

  13. Giemsa G (1904) Eine Vereinfachung und Vervollkommnung meiner Methylenblau-Eosin-Färbemethode zur Erzielung der Romanowsky-Nocht’schen Chromatinfärbung. Centralblatt für Bakteriologie I Abteilung 32:307–313

    Google Scholar 

  14. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta (BBA) Nucleic Acids Protein Synth 269(2):192–200. https://doi.org/10.1016/0005-2787(72)90426-1

    Article  CAS  Google Scholar 

  15. Russell WC, Newman C, Williamson DH (1975) A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature 253(5491):461–462. https://doi.org/10.1038/253461a0

    Article  CAS  PubMed  Google Scholar 

  16. Seiji Matsumoto KM, Yanagida M (1981) Light microscopic structure of DNA in solution studied by the 4',6-diamidino-2-phenylindole staining method. J Mol Biol 152(2):501–516. https://doi.org/10.1016/0022-2836(81)90255-2

    Article  Google Scholar 

  17. Morikawa K, Yanagida M (1981) Visualization of individual DNA molecules in solution by light microscopy: DAPI staining method. J Biochem 89(2):693–696

    Article  CAS  Google Scholar 

  18. Glazer AN, Rye HS (1992) Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359(6398):859–861

    Article  CAS  Google Scholar 

  19. Zohar H, Muller SJ (2011) Labeling DNA for single-molecule experiments: methods of labeling internal specific sequences on double-stranded DNA. Nanoscale 3(8):3027–3039. https://doi.org/10.1039/c1nr10280j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee J, Kim Y, Lee S, Jo K (2015) Visualization of large elongated DNA molecules. Electrophoresis 36(17):2057–2071. https://doi.org/10.1002/elps.201400479

    Article  CAS  PubMed  Google Scholar 

  21. Vranken C, Deen J, Dirix L, Stakenborg T, Dehaen W, Leen V, Hofkens J, Neely RK (2014) Super-resolution optical DNA mapping via DNA methyltransferase-directed click chemistry. Nucleic Acids Res 42(7):e50. https://doi.org/10.1093/nar/gkt1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jo K, Dhingra DM, Odijk T, de Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC (2007) A single-molecule barcoding system using nanoslits for DNA analysis. Proc Natl Acad Sci U S A 104(8):2673–2678. https://doi.org/10.1073/pnas.0611151104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee J, Park HS, Lim S, Jo K (2013) Visualization of UV-induced damage on single DNA molecules. Chem Commun (Camb) 49(42):4740–4742. https://doi.org/10.1039/c3cc38884k

    Article  CAS  Google Scholar 

  24. Paramanathan T, Reeves D, Friedman LJ, Kondev J, Gelles J (2014) A general mechanism for competitor-induced dissociation of molecular complexes. Nat Commun 5:5207. https://doi.org/10.1038/ncomms6207

    Article  CAS  PubMed  Google Scholar 

  25. Tang X, Zhang J, Sun J, Wang Y, Wu J, Zhang L (2013) Caged nucleotides/nucleosides and their photochemical biology. Org Biomol Chem 11(45):7814–7824. https://doi.org/10.1039/c3ob41735b

    Article  CAS  PubMed  Google Scholar 

  26. Xiao M, Phong A, Ha C, Chan TF, Cai D, Leung L, Wan E, Kistler AL, DeRisi JL, Selvin PR, Kwok PY (2007) Rapid DNA mapping by fluorescent single molecule detection. Nucleic Acids Res 35(3):e16. https://doi.org/10.1093/nar/gkl1044

    Article  CAS  PubMed  Google Scholar 

  27. Kounovsky-Shafer KL, Hernandez-Ortiz JP, Potamousis K, Tsvid G, Place M, Ravindran P, Jo K, Zhou S, Odijk T, de Pablo JJ, Schwartz DC (2017) Electrostatic confinement and manipulation of DNA molecules for genome analysis. Proc Natl Acad Sci U S A 114(51):13400–13405. https://doi.org/10.1073/pnas.1711069114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robert K, Neely PD, Hotta J-i, Urbanavičiūtė G, Klimašauskas S, Hofkens J (2010) DNA fluorocode: a single molecule, optical map of DNA with nanometre resolution. Chem Sci 1(4):453–460

    Article  Google Scholar 

  29. Nyberg LK, Persson F, Berg J, Bergstrom J, Fransson E, Olsson L, Persson M, Stalnacke A, Wigenius J, Tegenfeldt JO, Westerlund F (2012) A single-step competitive binding assay for mapping of single DNA molecules. Biochem Biophys Res Commun 417(1):404–408. https://doi.org/10.1016/j.bbrc.2011.11.128

    Article  CAS  PubMed  Google Scholar 

  30. Lee S, Kawamoto Y, Vaijayanthi T, Park J, Bae J, Kim-Ha J, Sugiyama H, Jo K (2018) TAMRA-polypyrrole for A/T sequence visualization on DNA molecules. Nucleic Acids Res 46(18):e108

    Article  Google Scholar 

  31. Davenport D, Nicol JAC (1955) Luminescence in hydromedusae. Proc R Soc Lond Ser B Biol Sci 144(916):399–411

    Google Scholar 

  32. Osamu Shimomura FHJ, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239. https://doi.org/10.1002/jcp.1030590302

    Article  Google Scholar 

  33. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea-victoria green-fluorescent protein. Gene 111(2):229–233

    Article  CAS  Google Scholar 

  34. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263(5148):802–805

    Article  CAS  Google Scholar 

  35. Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6(10):713–717

    Article  CAS  Google Scholar 

  36. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120(24):4247–4260

    Article  CAS  Google Scholar 

  37. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973

    Article  CAS  Google Scholar 

  38. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    Article  CAS  Google Scholar 

  39. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5(6):545–551

    Article  CAS  Google Scholar 

  40. Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    Article  CAS  Google Scholar 

  41. Jin X, Hapsari ND, Lee S, Jo K (2020) DNA binding fluorescent proteins as single-molecule probes. Analyst 145(12):4079–4095. https://doi.org/10.1039/d0an00218f

    Article  CAS  PubMed  Google Scholar 

  42. Shu XK, Shaner NC, Yarbrough CA, Tsien RY, Remington SJ (2006) Novel chromophores and buried charges control color in mFruits. Biochemistry 45(32):9639–9647

    Article  CAS  Google Scholar 

  43. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci U S A 97(22):11984–11989

    Article  CAS  Google Scholar 

  44. Costantini LM, Snapp EL (2013) Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol 32(11):622–627

    Article  CAS  Google Scholar 

  45. Ratz M, Testa I, Hell SW, Jakobs S (2015) CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci Rep 5:9592

    Google Scholar 

  46. Stewart-Ornstein J, Lahav G (2016) Dynamics of CDKN1A in single cells defined by an endogenous fluorescent tagging toolkit. Cell Rep 14(7):1800–1811

    Article  CAS  Google Scholar 

  47. Lee S, Wang C, Song J, Kim DG, Oh Y, Ko W, Lee J, Park J, Lee HS, Jo K (2016) Investigation of various fluorescent protein-DNA binding peptides for effectively visualizing large DNA molecules. RSC Adv 6(52):46291–46298. https://doi.org/10.1039/c6ra08683g

    Article  CAS  Google Scholar 

  48. Kim KI, Lee S, Jin X, Kim SJ, Jo K, Lee JH (2017) DNA binding peptide directed synthesis of continuous DNA nanowires for analysis of large DNA molecules by scanning electron microscope. Small 13(2). https://doi.org/10.1002/smll.201601926

  49. Kim KI, Yoon S, Chang J, Lee S, Cho HH, Jeong SH, Jo K, Lee JH (2020) Multifunctional heterogeneous carbon nanotube nanocomposites assembled by DNA-binding peptide anchors. Small 16(5):e1905821. https://doi.org/10.1002/smll.201905821

    Article  CAS  PubMed  Google Scholar 

  50. Shin E, Kim W, Lee S, Bae J, Kim S, Ko W, Seo HS, Lim S, Lee HS, Jo K (2019) Truncated TALE-FP as DNA staining dye in a High-salt buffer. Sci Rep 9(1):17197. https://doi.org/10.1038/s41598-019-53722-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park J, Lee S, Won N, Shin E, Kim SH, Chun MY, Gu J, Jung GY, Lim KI, Jo K (2019) Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins. Analyst 144(3):921–927. https://doi.org/10.1039/c8an01426d

    Article  CAS  PubMed  Google Scholar 

  52. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review – the fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  CAS  Google Scholar 

  53. Dyachok O, Isakov Y, Sagetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439(7074):349–352. https://doi.org/10.1038/nature04410

    Article  CAS  PubMed  Google Scholar 

  54. Shemiakina II, Ermakova GV, Cranfill PJ, Baird MA, Evans RA, Souslova EA, Staroverov DB, Gorokhovatsky AY, Putintseva EV, Gorodnicheva TV, Chepurnykh TV, Strukova L, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM, Shcherbo D (2012) A monomeric red fluorescent protein with low cytotoxicity. Nat Commun 3:1204. https://doi.org/10.1038/ncomms2208

    Article  CAS  PubMed  Google Scholar 

  55. Shen Y, Chen Y, Wu J, Shaner NC, Campbell RE (2017) Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS One 12(2):e0171257. https://doi.org/10.1371/journal.pone.0171257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. SH Lee, Ms. JH Park, Ms. EJ Shin, and Ms. WJ Kim for assisting in the development of FP-DBP. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2016R1A6A1A03012845 and NRF-2020R1A2B5B02001831).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuelin Jin or Kyubong Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, X., Kim, Y.T., Jo, K. (2023). DNA Visualization Using Fluorescent Proteins. In: Sharma, M. (eds) Fluorescent Proteins. Methods in Molecular Biology, vol 2564. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2667-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2667-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2666-5

  • Online ISBN: 978-1-0716-2667-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics