Skip to main content

Field-Theoretic Simulation Method to Study the Liquid–Liquid Phase Separation of Polymers

  • Protocol
  • First Online:
Phase-Separated Biomolecular Condensates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2563))

  • 2674 Accesses

Abstract

Liquid–liquid phase separation (LLPS) is a process that results in the formation of a polymer-rich liquid phase coexisting with a polymer-depleted liquid phase. LLPS plays a critical role in the cell through the formation of membrane-less organelles, but it also has a number of biotechnical and biomedical applications such as drug confinement and its targeted delivery. In this chapter, we present a computational efficient methodology that uses field-theoretic simulations (FTS) with complex Langevin (CL) sampling to characterize polymer phase behavior and delineate the LLPS phase boundaries. This approach is a powerful complement to analytical and explicit-particle simulations, and it can serve to inform experimental LLPS studies. The strength of the method lies in its ability to properly sample a large ensemble of polymers in a saturated solution while including the effect of composition fluctuations on LLPS. We describe the approaches that can be used to accurately construct phase diagrams of a variety of molecularly designed polymers and illustrate the method by generating an approximation-free phase diagram for a classical symmetric diblock polyampholyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das S, Lin Y, Vernon R, Forman-kay J, Chan H (2020) Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proc Nat Acad Sci 117:28795–28805

    Article  CAS  Google Scholar 

  2. Kim S, Huang J, Lee Y, Dutta S, Yoo H, Jung Y, Jho Y, Zeng H, Hwang D (2016) Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proc Nat Acad Sci 113:E847–E853

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nguyen P, Ramamoorthy A, Sahoo B, Zheng J, Faller P, Straub J, Dominguez L, Shea J, Dokholyan N, Desimone A, Ma B, Nussinov R, Najafi S, Ngo S, Loquet A, Chiricotto M, Ganguly P, Mccarty J, Li M, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig A, Derreumaux P (2021) Amyloid oligomers: a joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral sclerosis. Chem Rev 121:2545–2647

    Article  CAS  Google Scholar 

  4. Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J (2022) Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry. https://doi.org/10.1021/acs.biochem.2c00210

  5. Madinya jj, Sing CE (2022) Hybrid Field Theory and Particle Simulation Model of Polyelec-trolyte–Surfactant Coacervation Macromolecules 55, 6, 2358–2373

    Google Scholar 

  6. Statt A, Casademunt H, Brangwynne C, Panagiotopoulos A (2020) Model for disordered proteins with strongly sequence-dependent liquid phase behavior. J Chem Phys 152:075101

    Article  CAS  Google Scholar 

  7. Milin A. et al. (2018) Reentrant phase transitions and non-equilibrium dynamics in membraneless organelles. Biochemistry 57:2470–2477

    Article  CAS  Google Scholar 

  8. Fredrickson GH, Xie S, Edmund J, Le ML, Sun D, Grzetic DJ, Vigil DL, Delaney KT, Chabinyc ML, Segalman RA (2022) Ionic Compatibilization of Polymers. ACS Polym. Au. https://doi.org/10.1021/acspolymersau.2c00026

  9. Fredrickson G, Ganesan V, Drolet F (2002) Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35:16–39

    Article  CAS  Google Scholar 

  10. Ganesan V, Fredrickson G (2001) Field-theoretic polymer simulations. Europhys Lett 55:814

    Article  CAS  Google Scholar 

  11. Shea J, Best RB, Mittal J (2021) Physics-based computational and theoretical approaches to intrinsically disordered proteins. Curr Opin Struct Biol 67:219–225

    Article  CAS  Google Scholar 

  12. Delaney K, Fredrickson G (2016) Recent developments in fully fluctuating field-theoretic simulations of polymer melts and solutions. J Phys Chem B. 120:7615–7634

    Article  CAS  Google Scholar 

  13. Mccarty J, Delaney K, Danielsen S, Fredrickson, Shea J (2019) Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins. J Phys Chem Lett 10:1644–1652

    Article  CAS  Google Scholar 

  14. Lin Y, Mccarty J, Rauch J, Delaney K, Kosik K, Fredrickson G, Shea J, Han S (2019) Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. Elife. 8:e42571

    Article  Google Scholar 

  15. Park S et al. (2020) Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Commun Chem 3:83

    Article  CAS  Google Scholar 

  16. Doi M, Edwards SF (1988) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  17. Edwards S (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc 85:613

    Article  CAS  Google Scholar 

  18. Villet M, Fredrickson G (2014) Efficient field-theoretic simulation of polymer solutions. J Chem Phys 141:224115

    Article  Google Scholar 

  19. Popov Y, Lee J, Fredrickson G (2007) Field-theoretic simulations of polyelectrolyte complexation. J Poly Sci B: Poly Phys 45:3223–3230

    Article  CAS  Google Scholar 

  20. Lee J Popov Y, Fredrickson G (2008) Complex coacervation: a field theoretic simulation study of polyelectrolyte complexation. J Chem Phys 128:224908

    Article  Google Scholar 

  21. Delaney K, Fredrickson G (2017) Theory of polyelectrolyte complexation—complex coacervates are self-coacervates. J Chem Phys 146:224902

    Article  Google Scholar 

  22. Danielsen S, Mccarty J, Shea J, Delaney K, Fredrickson G (2019) Molecular design of self-coacervation phenomena in block polyampholytes. Proc Nat Acad Sci 116:8224–8232

    Article  CAS  Google Scholar 

  23. Danielsen S, Mccarty J, Shea J, Delaney K, Fredrickson G (2017) Small ion effects on self-coacervation phenomena in block polyampholytes. J Chem Phys 151:034904

    Article  Google Scholar 

  24. Fredrickson GH (2006) The equilibrium theory of inhomogeneous polymers. Oxford University Press, Oxford

    Google Scholar 

  25. Klauder JR (1983) A Langevin approach to fermion and quantum spin correlation functions. J Phys A: Math Gener 16:L317–L319

    Article  Google Scholar 

  26. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172:803–808

    Article  CAS  Google Scholar 

  27. Qin S, Zhou H-X (2016) Fast method for computing chemical potentials and liquid-liquid phase equilibria of macromolecular solutions. J Phys Chem B 120:8164–8174

    Article  CAS  Google Scholar 

  28. Düchs D, Delaney K, Fredrickson G (2014) A multi-species exchange model for fully fluctuating polymer field theory simulations. J Chem Phys 141:174103

    Article  Google Scholar 

  29. Flory P, Volkenstein M (1969) Statistical mechanics of chain molecules. Biopolymers 8:699–700

    Article  Google Scholar 

  30. Athanassios Z (1987) Panagiotopoulos direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61:813–826

    Article  Google Scholar 

  31. Riggleman R, Fredrickson G (2010) Field-theoretic simulations in the Gibbs ensemble. J Chem Phys 132:024104

    Article  Google Scholar 

  32. Mester Z, Lynd N, Fredrickson G (2013) Numerical self-consistent field theory of multicomponent polymer blends in the Gibbs ensemble. Soft Matter 9:11288–11294

    Article  CAS  Google Scholar 

  33. Mester Z, Lynd N, Delaney K, Fredrickson G (2014) Phase coexistence calculations of reversibly bonded block copolymers: a unit cell gibbs ensemble approach. Macromolecules 47:1865–1874

    Article  CAS  Google Scholar 

  34. Zhang X et al. (2020) The proline-rich domain promotes Tau liquid–liquid phase separation in cells. J Cell Biol 219:e202006054

    Article  CAS  Google Scholar 

  35. Najafi S, Lin Y, Longhini A, Zhang X, Delaney K, Kosik K, Fredrickson G, Shea J, Han S (2021) Liquid–liquid phase separation of Tau by self and complex coacervation. Protein Sci 30(7):1393–1407

    Article  CAS  Google Scholar 

  36. Sherck N, Shen K, Nguyen M, Yoo B, Köhler S, Speros JC, Delaney KT, Shell MS, Fredrickson GH (2021) Molecularly informed field theories from bottom-up coarse-graining. ACS Macro Lett 10:576–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Institutes of Health (NIH) under Grant Number R01AG05605 and by the MRSEC Program of the National Science Foundation under Award No. DMR 1720256. The authors also acknowledge support from the National Science Foundation NSF under Award No. MCB-1716956. This research used resources of the Extreme Science and Engineering Discovery Environment (XSEDE, supported by the NSF Project TG-MCA05S027) and the Center for Scientific Computing from the California NanoSystems Institute UC Santa Barbara (CNSI) available through the Materials Research Laboratory (MRL): an NSF MRSEC (DMR-1720256) and NSF CNS-1725797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan-Emma Shea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Najafi, S., McCarty, J., Delaney, K.T., Fredrickson, G.H., Shea, JE. (2023). Field-Theoretic Simulation Method to Study the Liquid–Liquid Phase Separation of Polymers. In: Zhou, HX., Spille, JH., Banerjee, P.R. (eds) Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, vol 2563. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2663-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2663-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2662-7

  • Online ISBN: 978-1-0716-2663-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics