Skip to main content

Studying Whole-Genome Duplication Using Experimental Evolution of Spirodela polyrhiza

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

Abstract

In this chapter, we present the use of Spirodela polyrhiza in experiments designed to study the evolutionary impact of whole-genome duplication (WGD). We shortly introduce this duckweed species and explain why it is a suitable model for experimental evolution. Subsequently, we discuss the most relevant steps and methods in the design of a ploidy-related duckweed experiment. These steps include strain selection, ploidy determination, different methods of making polyploid duckweeds, replication, culturing conditions, preservation, and the ways to quantify phenotypic and transcriptomic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox DT, Soltis DE, Soltis PS, Ashman TL, Van de Peer Y (2020) Polyploidy: a biological force from cells to ecosystems. Trends Cell Biol 30:688

    Article  CAS  Google Scholar 

  2. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci 106(33):13,875–13,879

    Google Scholar 

  3. Van de Peer Y, Ashman TL, Soltis PS, Soltis DE (2020) Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33(1):11–26. https://doi.org/10.1093/plcell/koaa015. https://academic.oup.com/plcell/article-pdf/33/1/11/36659456/koaa015.pdf

    Article  Google Scholar 

  4. Bafort Q, Prost L, Aydogdu E, Van de Vloet A, Casteleyn G, Van de Peer Y, De Clerck O (2022) Studying whole-genome duplication using experimental evolution of Chlamydomonas. In: Van de Peer Y, Zwaenepoel A, Li Z (eds) Polyploidy. Methods in Molecular Biology. Humana Press

    Google Scholar 

  5. Group AP (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121

    Article  Google Scholar 

  6. Lemon GD, Posluszny U (2000) Comparative shoot development and evolution in the lemnaceae. Int J Plant Sci 161(5):733–748

    Article  Google Scholar 

  7. Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (lemnaceae)-the most rapidly growing higher plants. Plant Biol 17(33–41):19

    Google Scholar 

  8. Wang W, Haberer G, Gundlach H, Glaßer C, Nussbaumer T, Luo M, Lomsadze A, Borodovsky M, Kerstetter R, Shanklin J et al (2014) The spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5(1):1–13

    Google Scholar 

  9. Landolt E, Kandeler R (1987) Biosystematic investigations in the family of duckweeds (lemnaceae), vol. 4: the family of lemnaceae-a monographic study, vol. 2 (phytochemistry, physiology, application, bibliography). Veroff Geobot Inst ETH, Stiftung Rubel, Zurich (Switzerland)

    Google Scholar 

  10. Landolt E (1986) Biosystematic investigations in the family of duckweeds (lemnaceae)(vol. 2.) the family of lemnaceae-a monographic study. vol. 1. Veroff Geobot Inst ETH 71:1–563

    Google Scholar 

  11. Urbanska-Worytkiewicz K (1980) Cytological variation within the family of lemnaceae. Veroff Geobot Inst ETH 70:30–101

    Google Scholar 

  12. Geber G (1989) Zur Karyosystematik der Lemnaceae

    Google Scholar 

  13. Wang W, Kerstetter RA, Michael TP et al (2011) Evolution of genome size in duckweeds (lemnaceae). J Bot 2011:1–9

    Article  Google Scholar 

  14. Hoang PT, Schubert V, Meister A, Fuchs J, Schubert I (2019) Variation in genome size, cell and nucleus volume, chromosome number and rdna loci among duckweeds. Sci Rep 9(1):1–13 15

    Google Scholar 

  15. Xu S, Stapley J, Gablenz S, Boyer J, Appenroth KJ, Sree KS, Gershenzon J, Widmer A, Huber M (2019) Low genetic variation is associated with low mutation rate in the giant duckweed. Nat Commun 10(1):1243

    Article  Google Scholar 

  16. Davidson D, Simon JP (1981) Thermal adaptation and acclimation of ecotypic populations of spirodela polyrhiza (lemnaceae): thermostability and apparent activation energy of nad malate dehydrogenase. Can J Bot 59(6):1061–1068

    Article  CAS  Google Scholar 

  17. Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ (2015) Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 241(6):1395–1404

    Article  CAS  Google Scholar 

  18. Wozakowska-Natkaniec H (1977) Ecological differentiation of Lemna minor l. and Spirodela polyrrhiza (l.) schleiden populations. Acta Soc Bot Pol 46(2):201

    Google Scholar 

  19. Kuehdorf K, Jetschke G, Ballani L, Appenroth KJ (2014) The clonal dependence of turion formation in the duckweed Spirodela polyrhiza an ecogeographical approach. Physiol Plant 150(1):46–54

    Google Scholar 

  20. Lammler W, Bogner J (2014) Elias Landolt and the duckweeds. Aroideana 37:81–88

    Google Scholar 

  21. Sree KJ, Appenroth KS (2020) Worldwide Genetic Resources of Duckweed: Stock Collections. Springer International Publishing, pp 39–46

    Book  Google Scholar 

  22. Borisjuk N, Chu P, Gutierrez R, Zhang H, Acosta K, Friesen N, Sree K, Garcia C, Appenroth K, Lam E (2015) Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species. Plant Biol 17:42–49

    Article  Google Scholar 

  23. Bog M, Lautenschlager U, Landrock MF, Landolt E, Fuchs J, Sree KS, Oberprieler C, Appenroth KJ (2015) Genetic characterization and barcoding of taxa in the genera Landoltia and Spirodela (lemnaceae) by three plastidic markers and amplified fragment length polymorphism (aflp). Hydrobiologia 749(1):169–182

    Article  CAS  Google Scholar 

  24. Braglia L, Lauria M, Appenroth KJ, Bog M, Breviario D, Grasso A, Gavazzi F, Morello L (2021) Duckweed species genotyping and interspecific hybrid discovery by tubulin-based polymorphism fingerprinting. Front Plant Sci 12:270

    Article  Google Scholar 

  25. Chu P, Wilson GM, Michael TP, Vaiciunas J, Honig J, Lam E (2018) Sequence-guided approach to genotyping plant clones and species using polymorphic nb-arc-related genes. Plant Mol Biol 98(3):219–231

    Article  CAS  Google Scholar 

  26. Feng B, Fang Y, Xu Z, Xiang C, Zhou C, Jiang F, Wang T, Zhao H (2017) Development of a new marker system for identification of Spirodela polyrhiza and Landoltia punctata. Int J Genom 2017:5196763

    Google Scholar 

  27. Cao HX, Vu GTH, Wang W, Appenroth KJ, Messing J, Schubert I (2016) The map-based genome sequence of s pirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209(1):354–363

    Article  CAS  Google Scholar 

  28. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051

    Article  CAS  Google Scholar 

  29. Vunsh R, Heinig U, Malitsky S, Aharoni A, Avidov A, Lerner A, Edelman M (2015) Manipulating duckweed through genome duplication. Plant Biol 17:115–119

    Article  CAS  Google Scholar 

  30. Hoagland D (1920) Optimum nutrient solutions for plants. Science 52(1354):562–564

    Article  CAS  Google Scholar 

  31. Yang J, Li G, Hu S, Bishopp A, Heenatigala P, Kumar S, Duan P, Yao L, Hou H (2018) A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (l.) schleiden using agrobacterium tumefaciens. Aquat Bot 151:80–86

    Article  Google Scholar 

  32. Duquenne B, Eeckhaut T, Werbrouck S, Van Huylenbroeck J (2007) Effect of enzyme concentrations on protoplast isolation and protoplast culture of Spathiphyllum and Anthurium. Plant Cell Tissue Organ Cult 91(2):165–173

    Article  CAS  Google Scholar 

  33. Rose MR, Garland J (2009) Darwin’s other mistake. In: Experimental evolution. University of California Press, pp 3–14

    Google Scholar 

  34. Futuyma DJ, Bennett AF (2009) The importance of experimental studies in evolutionary biology. In: Experimental Evolution. University of California Press, pp 15–30

    Google Scholar 

  35. Lachapelle J, Reid J, Colegrave N (2015) Repeatability of adaptation in experimental populations of different sizes. Proc R Soc Lond B Biol Sci 282(1805):20143033

    Google Scholar 

  36. Collins S (2016) Growth rate evolution in improved environments under prodigal son dynamics. Evol Appl 9(9):1179–1188

    Article  Google Scholar 

  37. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC (2012) Experimental evolution. Trends Ecol Evol 27(10):547–560

    Article  Google Scholar 

  38. Steinberg RA (1946) Mineral requirements of Lemna minor. Plant Physiol 21(1):42

    Article  CAS  Google Scholar 

  39. Appenroth KJ, Teller S, Horn M (1996) Photophysiology of turion formation and germination in spirodela polyrhiza. Biol Plant 38(1):95

    Article  Google Scholar 

  40. Schenk RU, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50(1):199–204

    Article  CAS  Google Scholar 

  41. Appenroth KJ (2015) Useful methods 3: Media for in vitro-cultivation of duckweed. Duckweed Forum 3:180–186

    Google Scholar 

  42. Appenroth KJ (2002) Co-action of temperature and phosphate in inducing turion formation in spirodela polyrhiza (great duckweed). Plant Cell Environ 25(9):1079–1085

    Article  CAS  Google Scholar 

  43. Hart SP, Turcotte MM, Levine JM (2019) Effects of rapid evolution on species coexistence. Proc Natl Acad Sci 116(6):2112–2117

    Article  CAS  Google Scholar 

  44. Morris RS (2019) Birth order as a source of diversification in spring phenology and its potential effects on performance in greater duckweed, Spirodela polyrhiza. PhD thesis, Carleton University

    Google Scholar 

  45. Pasaribu B, Che YF, Lam E (2021) Optimizing a protocol for long-term storage of duckweed clones as turions. Duckweed Forum 9(2):34–39

    Google Scholar 

  46. Szabo S, Scheffer M, Roijackers R, Waluto B, Braun M, Nagy PT, Borics G, Zambrano L (2010) Strong growth limitation of a floating plant (Lemna gibba) by the submerged macrophyte (Elodea nuttallii) under laboratory conditions. Freshw Biol 55(3):681–690

    Article  CAS  Google Scholar 

  47. Gopal B, Goel U (1993) Competition and allelopathy in aquatic plant communities. Bot Rev 59(3):155–210

    Article  Google Scholar 

  48. Holomuzki JR, Feminella JW, Power ME (2010) Biotic interactions in freshwater benthic habitats. J N Am Benthol Soc 29(1):220–244

    Article  Google Scholar 

  49. Landolt E (1957) Physiologische und okologische untersuchungen an lemnaceen. habilitationsschrift eth, 1957. published in: Berichte der schweizerischen botanischen gesellschaft, vol. 67, pp. 271-410. Berichte der Schweizerischen Botanischen Gesellschaft 67:271–410

    Google Scholar 

  50. Zhang LM, Jin Y, Yao SM, Lei NF, Chen JS, Zhang Q, Yu FH (2020) Growth and morphological responses of duckweed to clonal fragmentation, nutrient availability, and population density. Front Plant Sci 11:618

    Article  CAS  Google Scholar 

  51. Bich TTN, Kato-Noguchi H (2012) Allelopathic potential of two aquatic plants, duckweed (Lemna minor l.) and water lettuce (Pistia Stratiotes l.), on terrestrial plant species. Aquat Bot 103:30–36

    Article  Google Scholar 

  52. Wolek JA (1974) A preliminary investigation on interactions (competition, allelopathy) between some species of Lemna, Spirodela and Wolfia. Berichte des Geobotanischen Institutes der Eidg Techn Hochschule 42:140–162

    Google Scholar 

  53. Xu N, Hu F, Wu J, Zhang W, Wang M, Zhu M, Ke J (2018) Characterization of 19 polymorphic ssr markers in Spirodela polyrhiza (lemnaceae) and cross-amplification in Lemna perpusilla. Appl Plant Sci 6(5):e01,153

    Article  Google Scholar 

  54. Xue H, Xiao Y, Jin Y, Li X, Fang Y, Zhao H, Zhao Y, Guan J (2012) Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers. Mol Biol Rep 39(1):547–554

    Article  CAS  Google Scholar 

  55. Szabo S, Roijackers R, Scheffer M (2003) A simple method for analysing the effects of algae on the growth of Lemna and preventing algal growth in duckweed bioassays. Archiv Fur Hydrobiologie 157(4):567–575

    Article  Google Scholar 

  56. Strzalek M, Kufel L, Wysokinska U (2019) How does Stratiotes aloides l. affect the growth and turion formation of spirodela polyrhiza (l.) schleiden? Aquat Bot 154:45–52

    Article  Google Scholar 

  57. Appenroth KJ, Krech K, Keresztes A, Fischer W, Koloczek H (2010) Effects of nickel on the chloroplasts of the duckweeds spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere 78(3):216–223

    Article  CAS  Google Scholar 

  58. Sree KS, Appenroth KJ (2014) Increase of starch accumulation in the duckweed Lemna minor under abiotic stress. Albanian J Agric Sci 13:11–17

    Google Scholar 

  59. Stewart JJ, Adams WW III, Escobar CM, Lopez-Pozo M, Demmig-Adams B (2020) Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Front Plant Sci 11:480

    Article  Google Scholar 

  60. Magel E (1991) Qualitative and quantitative determination of starch by a colorimetric method. Starch-Starke 43(10):384–387

    Article  CAS  Google Scholar 

  61. Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1(3):1342–1345

    Article  CAS  Google Scholar 

  62. Liu Y, Xu H, Wang Y, Tang X, He G, Wang S, Ma Y, Kong Y, Yu C, Zhou G (2020) A submerged duckweed mutant with abundant starch accumulation for bioethanol production. GCB Bioenergy 12(12):1078–1091 16

    Article  Google Scholar 

  63. Xiao Y, Fang Y, Jin Y, Zhang G, Zhao H (2013) Culturing duckweed in the field for starch accumulation. Ind Crop Prod 48:183–190

    Article  CAS  Google Scholar 

  64. Park J, Lee H, Han T (2020) Comparative paraquat sensitivity of newly germinated and mature fronds of the aquatic macrophyte Spirodela polyrhiza. Am J Plant Sci 11(7):1008–1024

    Article  CAS  Google Scholar 

  65. Sree KS, Keresztes A, Mueller-Roeber B, Brandt R, Eberius M, Fischer W, Appenroth KJ (2015) Phytotoxicity of cobalt ions on the duckweed Lemna minor-morphology, ion uptake, and starch accumulation. Chemosphere 131:149–156

    Article  CAS  Google Scholar 

  66. Witkowski E, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88(4):486–493

    Article  CAS  Google Scholar 

  67. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology 148:350–382

    Google Scholar 

  68. Mancinelli AL (1984) Photoregulation of anthocyanin synthesis: VIII. effect of light pretreatments. Plant Physiol 75(2):447–453

    Article  CAS  Google Scholar 

  69. Klughammer C, Schreiber U (2008) Complementary ps ii quantum yields calculated from simple fluorescence parameters measured by pam fluorometry and the saturation pulse method. PAM Appl Notes 1(2):201–247

    Google Scholar 

  70. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64(13):3983–3998

    Article  CAS  Google Scholar 

  71. Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21(10):539–543

    Article  CAS  Google Scholar 

  72. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186(1):5–17

    Article  CAS  Google Scholar 

  73. Doyle JJ, Coate JE (2018) Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. Int J Plant Sci 180(1):000–000

    Google Scholar 

  74. Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57-63 18

    Google Scholar 

  75. Stark R, Grzelak M, Hadfield J (2019) RNA sequencing: the teenage years. Nat Rev Genet 20(11):631–656

    Article  CAS  Google Scholar 

  76. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X et al (2016) A survey of best practices for rna-seq data analysis. Genome Biol 17(1):1-19 14

    Google Scholar 

  77. Pereira MA, Imada EL, Muniz Guedes R (2017) RNA-seq: applications and best practices. In: Applications of RNA-Seq and omics strategies: from microorganisms to human health. Intechopen, p 1

    Google Scholar 

  78. Jackson S, Chen ZJ (2010) Genomic and expression plasticity of polyploidy. Curr Opin Plant Biol 13(2):153–159

    Article  CAS  Google Scholar 

  79. Yoo MJ, Liu X, Pires JC, Soltis PS, Soltis DE (2014) Nonadditive gene expression in polyploids. Annu Rev Genet 48:485–517

    Article  CAS  Google Scholar 

  80. Coate JE, Doyle JJ (2010) Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid. Genome Biol Evol 2:534–546

    Article  Google Scholar 

  81. Coate JE, Doyle JJ (2015) Variation in transcriptome size: are we getting the message? Chromosoma 124(1):27–43

    Article  CAS  Google Scholar 

  82. Coate J (2022) Beyond transcript concentrations: Methods to quantify polyploid expression responses per biomass, per genome, and per cell with RNA-Seq. In: Van de Peer Y, Zwaenepoel A, Li Z (eds) Polyploidy. Methods in molecular biology. Humana Press

    Google Scholar 

Download references

Acknowledgments

This work was supported by Ghent University (Methusalem funding, BOF.MET.2021.0005.01), Research Foundation Flanders (personal grants to Lucas Prost and Quinten Bafort), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 833522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinten Bafort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, T., Natran, A., Prost, L., Aydogdu, E., Van de Peer, Y., Bafort, Q. (2023). Studying Whole-Genome Duplication Using Experimental Evolution of Spirodela polyrhiza. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics