Skip to main content

Characterization of the Effects of Candida Gastrointestinal Colonization on Clostridioides difficile Infection in a Murine Model

  • Protocol
  • First Online:
Candida Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2542))

Abstract

The role of fungal colonizers of the gastrointestinal tract during disease states is not well understood. Antibiotic treatment renders patients highly susceptible to infection by the bacterial pathogen C. difficile while also leading to blooms in fungal commensals, setting the stage for trans-kingdom interactions. Here, we describe a murine model of Candida gastrointestinal colonization coupled to a C. difficile infection (CDI) model, the measurement of CFU of both organisms, and collection of cecum and colon contents for the purpose of quantifying C. difficile toxin production. Additionally, we describe how to induce and purify C. difficile spores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21(7):334–341

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Goodrich JK et al (2014) Conducting a microbiome study. Cell 158(2):250–262

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Huseyin CE et al (2017) The fungal frontier: a comparative analysis of methods used in the study of the Human Gut Mycobiome. Front Microbiol 8:1432

    PubMed  PubMed Central  Google Scholar 

  4. Hallen-Adams HE et al (2015) Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol 15:9–17

    Google Scholar 

  5. Hallen-Adams HE, Suhr MJ (2017) Fungi in the healthy human gastrointestinal tract. Virulence 8(3):352–358

    CAS  PubMed  Google Scholar 

  6. Hoffmann C et al (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8(6):e66019

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nash AK et al (2017) The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5(1):153

    PubMed  PubMed Central  Google Scholar 

  8. Cohen R et al (1969) Fungal flora of the normal human small and large intestine. N Engl J Med 280(12):638–641

    CAS  PubMed  Google Scholar 

  9. Abou Chakra CN et al (2014) Risk factors for recurrence, complications and mortality in Clostridium difficile infection: a systematic review. PLoS One 9(6):e98400

    PubMed  PubMed Central  Google Scholar 

  10. Alvarez-Perez S et al (2009) Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. Vet Microbiol 137(3–4):302–305

    CAS  PubMed  Google Scholar 

  11. Bartlett JG (1996) Management of Clostridium difficile infection and other antibiotic-associated diarrhoeas. Eur J Gastroenterol Hepatol 8(11):1054–1061

    CAS  PubMed  Google Scholar 

  12. Bartlett JG (1984) Treatment of antibiotic-associated pseudomembranous colitis. Rev Infect Dis 6(Suppl 1):S235–S241

    PubMed  Google Scholar 

  13. Brown KA et al (2013) Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother 57(5):2326–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baktash A et al (2018) Mechanistic insights in the success of Fecal Microbiota transplants for the treatment of Clostridium difficile Infections. Front Microbiol 9:1242

    PubMed  PubMed Central  Google Scholar 

  15. Dicks LMT et al (2018) Clostridium difficile, the difficult "Kloster" Fuelled by antibiotics. Curr Microbiol 76:774

    PubMed  Google Scholar 

  16. Clark JD (1971) Influence of antibiotics or certain intestinal bacteria on orally administered Candida albicans in germ-free and conventional mice. Infect Immun 4(6):731–737

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ekenna O, Sherertz RJ (1987) Factors affecting colonization and dissemination of Candida albicans from the gastrointestinal tract of mice. Infect Immun 55(7):1558–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kennedy MJ, Volz PA (1985) Ecology of Candida albicans gut colonization: inhibition of Candida adhesion, colonization, and dissemination from the gastrointestinal tract by bacterial antagonism. Infect Immun 49(3):654–663

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Noverr MC et al (2004) Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun 72(9):4996–5003

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamendella R et al (2018) Antibiotic treatments for Clostridium difficile Infection are associated with distinct bacterial and fungal community structures. mSphere 3(1):e00572–e00517

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrella LA et al (2012) Decreased cure and increased recurrence rates for Clostridium difficile infection caused by the epidemic C. difficile BI Strain. Clin Infect Dis 55(3):351–357

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Raponi G et al (2014) Clostridium difficile infection and Candida colonization of the gut: is there a correlation? Clin Infect Dis 59(11):1648–1649

    CAS  PubMed  Google Scholar 

  23. Zuo T et al (2018) Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun 9(1):3663

    PubMed  PubMed Central  Google Scholar 

  24. Blanco N et al (2018) Clostridium difficile shows no trade-off between toxin and spore production within the human host. J Med Microbiol 67(5):631–640

    CAS  PubMed  Google Scholar 

  25. Manian FA, Bryant A (2013) Does Candida species overgrowth protect against Clostridium difficile infection? Clin Infect Dis 56(3):464–465

    PubMed  Google Scholar 

  26. Nerandzic MM et al (2012) Reduced acquisition and overgrowth of Vancomycin-resistant Enterococci and Candida Species in patients treated with Fidaxomicin versus Vancomycin for Clostridium difficile Infection. Clin Infect Dis 55(suppl_2):S121–S126

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koh AY et al (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4(2):e35

    PubMed  PubMed Central  Google Scholar 

  28. White SJ et al (2007) Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3(12):e184

    PubMed  PubMed Central  Google Scholar 

  29. Mellado E et al (2000) Sustained gastrointestinal colonization and systemic dissemination by Candida albicans, Candida tropicalis and Candida parapsilosis in adult mice. Diagn Microbiol Infect Dis 38(1):21–28

    CAS  PubMed  Google Scholar 

  30. Clemons KV et al (2006) Development of an orogastrointestinal mucosal model of candidiasis with dissemination to visceral organs. Antimicrob Agents Chemother 50(8):2650–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wiesner SM et al (2001) Gastrointestinal colonization by Candida albicans mutant strains in antibiotic-treated mice. Clin Diagn Lab Immunol 8(1):192–195

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi K et al (2003) Translocation model of Candida albicans in DBA-2/J mice with protein calorie malnutrition mimics hematogenous candidiasis in humans. Microb Pathog 35(5):179–187

    PubMed  Google Scholar 

  33. de Repentigny L, Phaneuf M, Mathieu LG (1992) Gastrointestinal colonization and systemic dissemination by Candida albicans and Candida tropicalis in intact and immunocompromised mice. Infect Immun 60(11):4907–4914

    PubMed  PubMed Central  Google Scholar 

  34. Cole GT et al (1989) Gastrointestinal and systemic candidosis in immunocompromised mice. J Med Vet Mycol 27(6):363–380

    CAS  PubMed  Google Scholar 

  35. Lawley TD, Young VB (2013) Murine models to study Clostridium difficile infection and transmission. Anaerobe 24:94–97

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hutton ML et al (2014) Small animal models for the study of Clostridium difficile disease pathogenesis. FEMS Microbiol Lett 352(2):140–149

    CAS  PubMed  Google Scholar 

  37. Theriot CM et al (2011) Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes 2(6):326–334

    PubMed  PubMed Central  Google Scholar 

  38. Markey L et al (2018) Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes 9(6):497–509

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gunsalus KT, Kumamoto CA (2016) Transcriptional profiling of Candida albicans in the host. Methods Mol Biol 1356:17–29

    CAS  PubMed  PubMed Central  Google Scholar 

  40. George WL et al (1979) Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol 9(2):214–219

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wilson KH, Kennedy MJ, Fekety FR (1982) Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 15(3):443–446

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Carson KC et al (2013) Isolation of Clostridium difficile from faecal specimens--a comparison of chromID C. difficile agar and cycloserine-cefoxitin-fructose agar. J Med Microbiol 62(Pt 9):1423–1427

    CAS  PubMed  Google Scholar 

  43. Bouillaut L, McBride SM, Sorg JA (2011) Genetic manipulation of Clostridium difficile. Curr Protoc Microbiol. Chapter 9: p. Unit 9A 2

    Google Scholar 

  44. Putnam EE et al (2013) SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 195(6):1214–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwards AN, McBride SM (2016) Isolating and purifying Clostridium difficile Spores. Methods Mol Biol 1476:117–128

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.A.R is supported by the Tufts IRACDA Award Number K12GM133314 from the National Institute of General Medical Sciences. Research in the Kumamoto lab is supported by grants R01AI118898 and U19AI131126 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Kumamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romo, J.A., Kumamoto, C.A. (2022). Characterization of the Effects of Candida Gastrointestinal Colonization on Clostridioides difficile Infection in a Murine Model. In: Calderone, R. (eds) Candida Species. Methods in Molecular Biology, vol 2542. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2549-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2549-1_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2548-4

  • Online ISBN: 978-1-0716-2549-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics