Skip to main content

The Q-system: A Versatile Repressible Binary Expression System

  • Protocol
  • First Online:
Drosophila

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2540))

Abstract

Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415. https://doi.org/10.1101/lm.1331809

    Article  CAS  PubMed  Google Scholar 

  2. Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51(4):458–476. https://doi.org/10.1128/MR.51.4.458-476.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Platt A, Reece RJ (1998) The yeast galactose genetic switch is mediated by the formation of a Gal4p–Gal80p–Gal3p complex. EMBO J 17(14):4086–4091. https://doi.org/10.1093/EMBOJ/17.14.4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giles NH, Geever RF, Asch DK, Avalos J, Case ME (1989) Organization and regulation of the qa (quinic acid) genes in Neurospora crassa and other fungi. J Hered 82:1–7

    Article  Google Scholar 

  5. Baum JA, Geever R, Giles NH (1987) Expression of qa-1F activator protein: identification of upstream binding sites in the qa gene cluster and localization of the DNA-binding domain. Mol Cell Biol 7(3):1256–1266. https://doi.org/10.1128/MCB.7.3.1256-1266.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geever RF, Huiet L, Baum JA, Tyler BM, Patel VB, Rutledge BJ et al (1989) DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol 207(1):15–34. https://doi.org/10.1016/0022-2836(89)90438-5

    Article  CAS  PubMed  Google Scholar 

  7. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science (80-) 302(5651):1765–1768. https://doi.org/10.1126/SCIENCE.1089035

    Article  CAS  Google Scholar 

  8. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9(5):703–709. https://doi.org/10.1038/nn1681

    Article  CAS  PubMed  Google Scholar 

  9. Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186(2):735–755. https://doi.org/10.1534/genetics.110.119917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22(3):451–461. https://doi.org/10.1016/S0896-6273(00)80701-1

    Article  CAS  PubMed  Google Scholar 

  11. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141(3):536–548. https://doi.org/10.1016/j.cell.2010.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L et al (2015) Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 12(3):219

    Article  CAS  Google Scholar 

  13. Gill G, Ptashne M (1987) Mutants of GAL4 protein altered in an activation function. Cell 51(1):121–126. https://doi.org/10.1016/0092-8674(87)90016-X

    Article  CAS  PubMed  Google Scholar 

  14. Kramer JM, Staveley BE (2003) GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res 2(1):43–47

    CAS  PubMed  Google Scholar 

  15. Shearin HK, MacDonald IS, Spector LP, Steven Stowers R (2014) Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196(4):951–960. https://doi.org/10.1534/genetics.113.161141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci 109(17):6626–6631. https://doi.org/10.1073/pnas.1204520109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Riabinina O, Vernon SW, Dickson BJ, Baines RA (2019) Split-QF system for fine-tuned transgene expression in Drosophila. Genetics 212(1):genetics.302034.2019. https://doi.org/10.1534/genetics.119.302034

  18. Mao S, Qi Y, Zhu H, Huang X, Zou Y, Chi T (2019) A Tet/Q hybrid system for robust and versatile control of transgene expression in C. elegans. iScience 11:224–237. https://doi.org/10.1016/j.isci.2018.12.023

    Article  CAS  PubMed  Google Scholar 

  19. Luan H, Peabody NC, Vinson CRR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52(3):425–436. https://doi.org/10.1016/j.neuron.2006.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tirian L, Dickson B (2017) The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. bioRxiv. 198648. https://doi.org/10.1101/198648

  21. Wei X, Potter CJ, Luo L, Shen K (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9(4):391

    Article  CAS  Google Scholar 

  22. Ghosh A, Halpern ME (2016) Transcriptional regulation using the Q system in transgenic zebrafish. Methods Cell Biol 135:205–218. https://doi.org/10.1016/bs.mcb.2016.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Younger MA, Herre M, Goldman OV, Lu T-C, Caballero-Vidal G, Qi Y, et al (2020) Non-canonical odor coding ensures unbreakable mosquito attraction to humans. bioRxiv. 2020.11.07.368720. https://doi.org/10.1101/2020.11.07.368720

  24. Potter CJ, Luo L (2011) Using the Q system in Drosophila melanogaster. Nat Protoc 6(8):1105–1120

    Article  CAS  Google Scholar 

  25. Li YX, Sibon OCM, Dijkers PF (2018) Inhibition of NF-ΚB in astrocytes is sufficient to delay neurodegeneration induced by proteotoxicity in neurons. J Neuroinflammation 15(1):261. https://doi.org/10.1186/s12974-018-1278-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edwards TN, Meinertzhagen IA (2010) The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 90(4):471–497. https://doi.org/10.1016/j.pneurobio.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Q, Stavropoulos N (2016) Evaluation of ligand-inducible expression systems for conditional neuronal manipulations of sleep in drosophila. G3 (Bethesda) 6(10):3351–3359. https://doi.org/10.1534/g3.116.034132

    Article  CAS  Google Scholar 

  28. Cottee PA, Cole T, Schultz J, Hoang HD, Vibbert J, Han SM et al (2017) The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development. Development 144(12):2187–2199. https://doi.org/10.1242/dev.152207

  29. Hoang HD, Miller MA (2017) Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity. PLoS Biol 15(6):e2002047. https://doi.org/10.1371/journal.pbio.2002047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lalwani MA, Zhao EM, Wegner SA, Avalos JL (2021) The Neurospora crassa inducible Q system enables simultaneous optogenetic amplification and inversion in saccharomyces cerevisiae for bidirectional control of gene expression. ACS Synth Biol. acssynbio.1c00229. https://doi.org/10.1021/ACSSYNBIO.1C00229

  31. MacDonald IC, Seamons TR, Emmons JC, Javdan SB, Deans TL (2021) Enhanced regulation of prokaryotic gene expression by a eukaryotic transcriptional activator. Nat Commun 12(1):1–10. https://doi.org/10.1038/s41467-021-24434-9

    Article  CAS  Google Scholar 

  32. Monsalve GC, Yamamoto KR, Ward JD (2018) A new tool for inducible gene expression in Caenorhabditis elegans. Genetics. genetics.301705.2018. https://doi.org/10.1534/genetics.118.301705

  33. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science (80-) 337(6096):816–821

    Article  CAS  Google Scholar 

  34. Lin C-C, Potter CJ (2016) Editing transgenic DNA components by inducible gene replacement in Drosophila melanogaster. Genetics 203(4):1613–1628

    Article  CAS  Google Scholar 

  35. Siegal ML, Hartl DL (1996) Transgene coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144(2):715–726.

    Google Scholar 

  36. Port F, Chen H-M, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci 111(29):E2967–E2976. https://doi.org/10.1073/PNAS.1405500111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM et al (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. https://doi.org/10.1534/GENETICS.113.152710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levis R, Hazelrigg T, Rubin GM (1985) Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science (80-) 229(4713):558–561. https://doi.org/10.1126/SCIENCE.2992080

    Article  CAS  Google Scholar 

  39. Xie T, Ho MCW, Liu Q, Horiuchi W, Lin C-C, Task D et al (2018) A genetic toolkit for dissecting dopamine circuit function in Drosophila. Cell Rep 23(2):652–665. https://doi.org/10.1016/J.CELREP.2018.03.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allen SE, Koreman GT, Sarkar A, Wang B, Wolfner MF, Han C (2021) Versatile CRISPR/Cas9-mediated mosaic analysis by gRNA-induced crossing-over for unmodified genomes. PLoS Biol 19(1):e3001061. https://doi.org/10.1371/JOURNAL.PBIO.3001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang P, Jia Y, Liu T, Jan YN, Zhang W (2020) Visceral mechano-sensing neurons control Drosophila feeding by using piezo as a sensor. Neuron 108(4):640–650.e4. https://doi.org/10.1016/J.NEURON.2020.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koreman GT, Xu Y, Hu Q, Zhang Z, Allen SE, Wolfner MF et al (2021) Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in Drosophila. Proc Natl Acad Sci 118(14). https://doi.org/10.1073/PNAS.2014255118

  43. Terradas G, Buchman AB, Bennett JB, Shriner I, Marshall JM, Akbari OS et al (2021) Inherently confinable split-drive systems in Drosophila. Nat Commun 12(1):1–12. https://doi.org/10.1038/s41467-021-21771-7

    Article  CAS  Google Scholar 

  44. Task D, Lin C-C, Vulpe A, Afify A, Ballou S, Brbić M et al (2022) Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 11:e72599. https://doi.org/10.7554/eLife.72599

  45. Chen Y, Dahanukar A (2017) Molecular and cellular organization of taste neurons in adult Drosophila pharynx. Cell Rep 21(10):2978–2991. https://doi.org/10.1016/J.CELREP.2017.11.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee S, Jones WD, Kim DH (2020) A cyclic nucleotide-gated channel in the brain regulates olfactory modulation through neuropeptide F in fruit fly Drosophila melanogaster. Arch Insect Biochem Physiol 103(1):e21620. https://doi.org/10.1002/arch.21620

    Article  CAS  PubMed  Google Scholar 

  47. Youn H, Kirkhart C, Chia J, Scott K (2018) A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster. PLoS One 13(6):e0198362. https://doi.org/10.1371/JOURNAL.PONE.0198362

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carreira-Rosario A, Zarin AA, Clark MQ, Manning L, Fetter RD, Cardona A et al (2018) MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. eLife 7. https://doi.org/10.7554/ELIFE.38554

  49. Gao X, Riabinina O, Li J, Potter C, Clandinin T, Luo L (2015) A transcriptional reporter of intracellular Ca(2+) in Drosophila. Nat Neurosci 18(6):917–925. https://doi.org/10.1038/NN.4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo F, Chen X, Rosbash M (2017) Temporal calcium profiling of specific circadian neurons in freely moving flies. Proc Natl Acad Sci 114(41):E8780–E8787. https://doi.org/10.1073/PNAS.1706608114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Simpson J, Looger L (2018) Functional imaging and optogenetics in Drosophila. Genetics 208(4):1291–1309. https://doi.org/10.1534/GENETICS.117.300228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jenett A, Rubin G, Ngo T, Shepherd D, Murphy C, Dionne H et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2(4):991–1001. https://doi.org/10.1016/J.CELREP.2012.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li HH, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G et al (2014) A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep 8(3):897–908. https://doi.org/10.1016/J.CELREP.2014.06.065

    Article  CAS  PubMed  Google Scholar 

  54. Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci 105(28):9715–9720. https://doi.org/10.1073/PNAS.0803697105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K et al (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512(7512):91–95. https://doi.org/10.1038/nature13395

    Article  CAS  PubMed  Google Scholar 

  56. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin CC et al (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8(3):231–237. https://doi.org/10.1038/nmeth.1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Venken KJT, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8(9):737–747. https://doi.org/10.1038/nmeth.1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Diao F, Ironfield H, Luan H, Diao F, Shropshire W, Ewer J et al (2015) Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 10(8):1410–1421. https://doi.org/10.1016/J.CELREP.2015.01.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee PT, Zirin J, Kanca O, Lin WW, Schulze KL, Li-Kroeger D et al (2018) A gene-specific T2A-GAL4 library for drosophila. eLife 7. https://doi.org/10.7554/ELIFE.35574

  60. Golic K, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59(3):499–509. https://doi.org/10.1016/0092-8674(89)90033-0

    Article  CAS  PubMed  Google Scholar 

  61. Bischof J, Basler K (2008) Recombinases and their use in gene activation, gene inactivation, and transgenesis. Methods Mol Biol 420:175–195. https://doi.org/10.1007/978-1-59745-583-1_10

    Article  CAS  PubMed  Google Scholar 

  62. Nern A, Pfeiffer BD, Svoboda K, Rubin GM (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci 108(34):14198–14203. https://doi.org/10.1073/PNAS.1111704108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dolan M, Luan H, Shropshire W, Sutcliffe B, Cocanougher B, Scott R et al (2017) Facilitating neuron-specific genetic manipulations in Drosophila melanogaster using a split GAL4 repressor. Genetics 206(2):775–784. https://doi.org/10.1534/GENETICS.116.199687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sethi S, Wang JW (2017) A versatile genetic tool for post-translational control of gene expression in Drosophila melanogaster. eLife 6. https://doi.org/10.7554/eLife.30327

  65. Riabinina O, Task D, Marr E, Lin C-C, Alford R, O’brochta DA et al (2016) Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat Commun 7:13010

    Article  CAS  Google Scholar 

  66. Zhao Z, Tian D, McBride CS (2021) Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. Cell Rep Methods 1(3):100042. https://doi.org/10.1016/J.CRMETH.2021.100042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Subedi A, Macurak M, Gee ST, Monge E, Goll MG, Potter CJ et al (2014) Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. Methods 66(3):433–440

    Article  CAS  Google Scholar 

  68. Burgess J, Burrows JT, Sadhak R, Chiang S, Weiss A, D’Amata C et al (2020) An optimized QF-binary expression system for use in zebrafish. Dev Biol 465(2):144–156. https://doi.org/10.1016/j.ydbio.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  69. Fitzgerald M, Gibbs C, Shimpi AA, Deans TL (2017) Adoption of the Q transcriptional system for regulating gene expression in stem cells. ACS Synth Biol 6(11):2014–2020

    Article  CAS  Google Scholar 

  70. Persad R, Reuter DN, Dice LT, Nguyen M-A, Rigoulot SB, Layton JS et al (2020) The Q-system as a synthetic transcriptional regulator in plants. Front Plant Sci 11:245

    Article  Google Scholar 

  71. Reis RS, Litholdo CG, Bally J, Roberts TH, Waterhouse PM (2018) A conditional silencing suppression system for transient expression. Sci Rep 8(1):1–7. https://doi.org/10.1038/s41598-018-27778-3

    Article  CAS  Google Scholar 

  72. Mózsik L, Büttel Z, Bovenberg RAL, Driessen AJM, Nygård Y (2019) Synthetic control devices for gene regulation in Penicillium chrysogenum. Microb Cell Factories 18(1):1–13. https://doi.org/10.1186/s12934-019-1253-3

    Article  CAS  Google Scholar 

  73. Lynd A, Lycett GJ (2012) Development of the bi-partite Gal4-UAS system in the African malaria mosquito, Anopheles gambiae. PLoS One 7(2):e31552. https://doi.org/10.1371/JOURNAL.PONE.0031552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kokoza VA, Raikhel AS (2011) Targeted gene expression in the transgenic Aedes aegypti using the binary Gal4-UAS system. Insect Biochem Mol Biol 41(8):637–644. https://doi.org/10.1016/J.IBMB.2011.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Brochta DA, Pilitt KL, Harrell RA, Aluvihare C, Alford RT (2012) Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi. G3 (Bethesda) 2(11):1305–1315. https://doi.org/10.1534/G3.112.003582

    Article  PubMed Central  Google Scholar 

  76. Lynd A, Lycett GJ (2011) Optimization of the Gal4-UAS system in an Anopheles gambiae cell line. Insect Mol Biol 20(5):599–608. https://doi.org/10.1111/J.1365-2583.2011.01090.X

    Article  CAS  PubMed  Google Scholar 

  77. Matthews BJ, Younger MA, Vosshall LB (2019) The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 8:e43963

    Article  Google Scholar 

  78. Afify A, Betz JF, Riabinina O, Lahondère C, Potter CJ (2019) Commonly used insect repellents hide human odors from Anopheles mosquitoes. Curr Biol 29(21):3669–3680

    Article  CAS  Google Scholar 

  79. Maguire SE, Afify A, Goff LA, Potter CJ (2022) Odorant-receptor-mediated regulation of chemosensory gene expression in the malaria mosquito Anopheles gambiae. Cell Reports 38(10):110494. https://doi.org/10.1016/j.celrep.2022.110494

  80. Ye Z, Liu F, Sun H, Barker M, Pitts RJ, Zwiebel LJ (2020) Heterogeneous expression of the ammonium transporter AgAmt in chemosensory appendages of the malaria vector, Anopheles gambiae. Insect Biochem Mol Biol 120:103360. https://doi.org/10.1016/j.ibmb.2020.103360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Potter CJ (2021) Unlocking pan-neuronal expression in mosquitoes. Cell Rep Methods 1(3):100051. https://doi.org/10.1016/J.CRMETH.2021.100051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Diao F, White BH (2012) A novel approach for directing transgene expression in Drosophila: T2A-Gal4 in-frame fusion. Genetics 190(3):1139–1144. https://doi.org/10.1534/GENETICS.111.136291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jové V, Gong Z, Hol FJH, Zhao Z, Sorrells TR, Carroll TS et al (2020) Sensory discrimination of blood and floral nectar by Aedes aegypti mosquitoes. Neuron 108(6):1163–1180.e12. https://doi.org/10.1016/j.neuron.2020.09.019

    Article  CAS  PubMed  Google Scholar 

  84. Shankar S, Tauxe GM, Spikol ED, Li M, Akbari OS, Giraldo D et al (2020) Synergistic coding of human odorants in the mosquito brain. bioRxiv. 2020.11.02.365916. https://doi.org/10.1101/2020.11.02.365916

  85. Sorrells TR, Pandey A, Rosas-Villegas A, Vosshall LB (2022) A persistent behavioral state enables sustained predation of humans by mosquitoes. eLife 11:e76663. https://doi.org/10.7554/eLife.76663

  86. Zhao Z, Zung JL, Hinze A, Kriete AL, Iqbal A, Younger MA, et al. (2022) Mosquito brains encode unique features of human odour to drive host seeking. Nature 605:706–712. https://doi.org/10.1038/s41586-022-04675-4

  87. Ye Z, Liu F, Sun H, Baker A, Zwiebel LJ (2021) Discrete roles of the Ir76b ionotropic co-receptor impact olfaction, blood feeding, and mating in the malaria vector mosquito Anopheles coluzzii. bioRxiv. 2021.07.05.451160. https://doi.org/10.1101/2021.07.05.451160

  88. Basrur NS, Elena De Obaldia M, Morita T, Herre M, von Heynitz RK, Tsitohay YN et al (2020) Fruitless mutant male mosquitoes gain attraction to human odor. eLife. https://doi.org/10.7554/eLife.63982

  89. Eckermann KN, Dippel S, KaramiNejadRanjbar M, Ahmed HM, Curril IM, Wimmer EA (2014) Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches. BMC Genet 15(2):1–10. https://doi.org/10.1186/1471-2156-15-S2-S17

    Article  Google Scholar 

  90. Hubbard JAE (2014) FLP/FRT and Cre/lox recombination technology in C. elegans. Methods 68(3):417–424. https://doi.org/10.1016/J.YMETH.2014.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang H, Liu J, Gharib S, Chai CM, Schwarz EM, Pokala N et al (2016) cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans. Nat Methods 14(2):145–148. https://doi.org/10.1038/nmeth.4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nonet ML (2020) Efficient transgenesis in Caenorhabditis elegans using flp recombinase-mediated cassette exchange. Genetics 215(4):903–921. https://doi.org/10.1534/genetics.120.303388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schild LC, Zbinden L, Bell HW, Yu YV, Sengupta P, Goodman MB et al (2014) The balance between cytoplasmic and nuclear CaM kinase-1 signaling controls the operating range of noxious heat avoidance. Neuron 84(5):983–996. https://doi.org/10.1016/J.NEURON.2014.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schild LC, Glauser DA (2015) Dual color neural activation and behavior control with chrimson and CoChR in Caenorhabditis elegans. Genetics 200(4):1029–1034. https://doi.org/10.1534/genetics.115.177956

  95. Jee C, Goncalves JF, LeBoeuf B, Garcia LR (2016) CRF-like receptor SEB-3 in sex-common interneurons potentiates stress handling and reproductive drive in C. elegans. Nat Commun 7(1):1–15. https://doi.org/10.1038/ncomms11957

    Article  CAS  Google Scholar 

  96. Tolstenkov O, Van der Auwera P, Costa WS, Bazhanova O, Gemeinhardt TM, Bergs ACF et al (2018) Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. eLife 7. https://doi.org/10.7554/ELIFE.34997

  97. Chiyoda H, Kume M, Castillo CCD, Kontani K, Spang A, Katada T et al (2021) Caenorhabditis elegans PTR/PTCHD PTR-18 promotes the clearance of extracellular hedgehog-related protein via endocytosis. PLoS Genet 17(4):e1009457. https://doi.org/10.1371/JOURNAL.PGEN.1009457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marques F, Thapliyal S, Javer A, Shrestha P, Brown AEX, Glauser DA (2020) Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions. PLoS Genet 16(10):e1009102. https://doi.org/10.1371/JOURNAL.PGEN.1009102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Aoki W, Matsukura H, Yamauchi Y, Yokoyama H, Hasegawa K, Shinya R et al (2018) Cellomics approach for high-throughput functional annotation of Caenorhabditis elegans neural network. Sci Rep 8(1):1–9

    Google Scholar 

  100. Scheer N, Campos-Ortega J (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80(2):153–158. https://doi.org/10.1016/S0925-4773(98)00209-3

    Article  CAS  PubMed  Google Scholar 

  101. Goll MG, Anderson R, Stainier DYR, Spradling AC, Halpern ME (2009) Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 182(3):747–755. https://doi.org/10.1534/genetics.109.102079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suli A, Guler AD, Raible DW, Kimelman D (2014) A targeted gene expression system using the tryptophan repressor in zebrafish shows no silencing in subsequent generations. Development 141(5):1167–1174. https://doi.org/10.1242/DEV.100057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Emelyanov A, Parinov S (2008) Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. Dev Biol 320(1):113–121. https://doi.org/10.1016/J.YDBIO.2008.04.042

    Article  CAS  PubMed  Google Scholar 

  104. Wopat S, Bagwell J, Sumigray KD, Dickson AL, Huitema LFA, Poss KD et al (2018) Spine patterning is guided by segmentation of the notochord sheath. Cell Rep 22(8):2026–2038. https://doi.org/10.1016/j.celrep.2018.01.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Peskin B, Henke K, Cumplido N, Treaster S, Harris MP, Bagnat M et al (2020) Notochordal signals establish phylogenetic identity of the teleost spine. Curr Biol 30(14):2805–2814.e3. https://doi.org/10.1016/j.cub.2020.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hachimi M, Grabowski C, Campanario S, Herranz G, Baonza G, Serrador JM et al (2021) Smoothelin-like 2 inhibits coronin-1B to stabilize the apical actin cortex during epithelial morphogenesis. Curr Biol 31(4):696–706.e9. https://doi.org/10.1016/j.cub.2020.11.010

    Article  CAS  PubMed  Google Scholar 

  107. Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, Kölsch Y et al (2021) Neural circuitry for stimulus selection in the zebrafish visual system. Neuron 109(5):805–822.e6. https://doi.org/10.1016/j.neuron.2020.12.002

    Article  CAS  PubMed  Google Scholar 

  108. Chaverra-Rodriguez D, Macias VM, Hughes GL, Pujhari S, Suzuki Y, Peterson DR et al (2018) Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat Commun 9(1):3008. https://doi.org/10.1038/s41467-018-05425-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Steve Chivasa, Tim Davies, and Jessica Mavica for insightful comments on the manuscript. OF was funded by the Laidlaw fellowship. OR was funded by the Wellcome Trust (217440/Z/19/Z) and the Royal Society (RGS\R2\192005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Potter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fölsz, O., Lin, CC., Task, D., Riabinina, O., Potter, C.J. (2022). The Q-system: A Versatile Repressible Binary Expression System. In: Dahmann, C. (eds) Drosophila. Methods in Molecular Biology, vol 2540. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2541-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2541-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2540-8

  • Online ISBN: 978-1-0716-2541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics