Skip to main content

Design of a Toolbox of RNA Thermometers

  • Protocol
  • First Online:
Riboregulator Design and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2518))

  • 883 Accesses

Abstract

RNA thermometers are RNA regulatory elements that convert temperature into a functional biological response through a temperature-induced conformational change. These regulatory elements have been investigated in numerous natural contexts and have been designed for synthetic biology as well. A basic challenge has been the design of an RNA thermometer whose final activity in response to temperature matches a prespecified response, in terms of its sensitivity, threshold, and leakiness. This chapter provides a methodology for the design of a toolbox of RNA thermometers. We describe considerations for the conceptual design, a computational assessment, and strategies for experimental synthesis and measurement.

This article is dedicated to the memory of Prof. Mashuq un Nabi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narberhaus F, Waldminghaus T, Chowdhury S (2005) RNA thermometers. FEMS Microbiol Rev 30:3–16

    Article  Google Scholar 

  2. Klinker B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66:2661–2676

    Article  Google Scholar 

  3. Kortmann J, Narberhaus F (2012) Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10:255–265

    Article  CAS  PubMed  Google Scholar 

  4. De la Fuente M, Valera S, Martínez-Guitarte (2012) ncRNAs and thermoregulation: a view in prokaryotes and eukaryotes. FEBS Lett 586:4061–4069

    Google Scholar 

  5. Krajewski SS, Narberhaus F (2014) Temperature-driven differential gene expression by RNA thermosensors. Biochim Biophys Acta 1839:978–988

    Article  CAS  PubMed  Google Scholar 

  6. Mandin P, Johansson J (2020) Feeling the heat at the millennium: thermosensors playing with fire. Mol Microbiol 113:588–592

    Article  CAS  PubMed  Google Scholar 

  7. Hoynes-O’Connor A, Hinman K, Kirchner L et al (2015) De novo design of heat-repressible RNA thermosensors in E. coli. Nucleic Acids Res 43:6166–6179

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roßmanith J, Weskamp M, Narberhaus F (2018) Design of a temperature-responsive transcription terminator. ACS Synth Biol 7:613–621

    Article  PubMed  Google Scholar 

  9. Neupert J, Karcher D, Bock R (2008) Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli. Nucleic Acids Res 36:e124

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jia H, Sun X, Sun H et al (2016) Intelligent microbial heat-regulating engine (IMHeRE) for improved thermo-robustness and efficiency of bioconversion. ACS Synth Biol 5:312–320

    Article  CAS  PubMed  Google Scholar 

  11. Sen S, Apurva D, Satija R et al (2017) Design of a toolbox of RNA thermometers. ACS Synth Biol 6:1461–1470

    Article  CAS  PubMed  Google Scholar 

  12. Sadler FW, Dodevski I, Sarkar CA (2018) RNA thermometers for the PURExpress system. ACS Synth Biol 7:292–296

    Article  CAS  PubMed  Google Scholar 

  13. Jia H, Heymann M, Härtel T et al (2019) Temperature-sensitive protein expression in protocells. Chem Commun 55:6421–6427

    Google Scholar 

  14. Morita M, Kanemori M, Yanagi H et al (1999) Heat-induced synthesis of σ32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J Bacteriol 181:401–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morita MT, Tanaka Y, Kodama TS et al (1999) Translational induction of heat shock transcription factor σ32: evidence for a built-in thermosensor. Genes Dev 13:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waldminghaus T, Heidrich N, Brantl S et al (2007) FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413–424

    Article  CAS  PubMed  Google Scholar 

  17. Eriksson S, Hurme R, Rhen M (2002) Low-temperature sensors in bacteria. Philos Trans R Soc Lond B 357:887–893

    Article  CAS  Google Scholar 

  18. Giuliodori AM, Di Pietro F, Marzi S et al (2010) The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell 37:21–33

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro RS, Cowen LE (2012) Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. MBio 3:e00238–e00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y-H, Wei KY, Smolke CD (2013) Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 4:69–102

    Article  PubMed  PubMed Central  Google Scholar 

  21. Piraner DI, Abedi MH, Moser BA et al (2017) Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 13:75–80

    Article  CAS  PubMed  Google Scholar 

  22. Hussain F, Gupta C, Hirnin AJ et al (2014) Engineered temperature compensation in a synthetic genetic clock. Proc Natl Acad Sci U S A 111:972–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sen S, Kim J, Murray RM (2014) Designing robustness to temperature in a feedforward loop circuit. In: Proceedings of 53rd IEEE Conference on Decision and Control, pp 4629–4634

    Chapter  Google Scholar 

  24. Neupert J, Bock R (2009) Designing and using synthetic RNA thermometers for temperature-controlled gene expression in bacteria. Nat Protoc 4:1262–1273

    Article  CAS  PubMed  Google Scholar 

  25. Meyer S, Carlson PD, Lucks JB (2017) Characterizing the structure-function relationship of a naturally occurring RNA thermometer. Biochemistry 56:6629–6638

    Article  CAS  PubMed  Google Scholar 

  26. Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  PubMed  Google Scholar 

  27. Berwal SK, Sreejith RK, Pal JK (2010) Distance between RBS and AUG plays an important role in overexpression of recombinant proteins. Anal Biochem 405:275–277

    Article  CAS  PubMed  Google Scholar 

  28. Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6:1105–1114

    Article  CAS  PubMed  Google Scholar 

  29. Lorenz R, Bernhart SH, zu Siederdissen H et al (2011) ViennaRNA Package 2.0. Algorithms Mol Bio 6:26

    Google Scholar 

  30. Garcia-Martin JA, Dotu I, Fernandez-Chamorro J (2016) RNAiFold2T: constraint programming design of thermo-IRES switches. Bioinformatics 32:i360–i368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun ZZ, Hayes CA, Shin J (2013) Protocols for implementing and Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp:e50762

    Google Scholar 

Download references

Acknowledgments

Support from DBT (BT/PR28513/med/32/672/2019) and the Discover and Learn Program, IRD, IIT Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaunak Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sen, S., Patel, A., Gola, K.K. (2022). Design of a Toolbox of RNA Thermometers. In: Chappell, J., Takahashi, M.K. (eds) Riboregulator Design and Analysis. Methods in Molecular Biology, vol 2518. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2421-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2421-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2420-3

  • Online ISBN: 978-1-0716-2421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics