Skip to main content

RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing

  • Protocol
  • First Online:
Riboregulator Design and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2518))

Abstract

Riboswitches are an attractive target for the directed design of RNA-based regulators by in silico prediction. These noncoding RNA elements consist of an aptamer platform for the highly selective ligand recognition and an expression platform which controls gene activity typically at the level of transcription or translation. In previous work, we could successfully apply RNA folding prediction to implement a new riboswitch mechanism regulating processing of a tRNA by RNase P. In this contribution, we present detailed information about our pipeline consisting of in silico design combined with the biochemical analysis for the verification of the implemented mechanism. Furthermore, we discuss the applicability of the presented biochemical in vivo and in vitro methods for the characterization of other artificial riboswitches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111(5):747–756

    Article  CAS  PubMed  Google Scholar 

  2. Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9(9):1043–1049. https://doi.org/10.1016/S1074-5521(02)00224-7

    Article  CAS  PubMed  Google Scholar 

  3. Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4(10):1024–1032. https://doi.org/10.1002/cbic.200300685

    Article  CAS  PubMed  Google Scholar 

  4. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5(6):451–463. https://doi.org/10.1038/nrm1403

    Article  CAS  PubMed  Google Scholar 

  5. Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29(1):11–17. https://doi.org/10.1016/j.tibs.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  6. Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517. https://doi.org/10.1146/annurev.micro.59.030804.121336

    Article  CAS  PubMed  Google Scholar 

  7. Berschneider B, Wieland M, Rubini M et al (2009) Small-molecule-dependent regulation of transfer RNA in bacteria. Angew Chem Int Ed Engl 48(41):7564–7567. https://doi.org/10.1002/anie.200900851

    Article  CAS  PubMed  Google Scholar 

  8. Groher F, Suess B (2014) Synthetic riboswitches – a tool comes of age. Biochim Biophys Acta 1839 10:964–973. https://doi.org/10.1016/j.bbagrm.2014.05.005

    Article  CAS  Google Scholar 

  9. Strobel B, Düchs MJ, Blazevic D et al (2020) A small-molecule-responsive riboswitch enables conditional induction of viral vector-mediated gene expression in mice. ACS Synth Biol 9(6):1292–1305. https://doi.org/10.1021/acssynbio.9b00410

    Article  CAS  PubMed  Google Scholar 

  10. Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32(4):1610–1614. https://doi.org/10.1093/nar/gkh321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wachsmuth M, Findeiss S, Weissheimer N et al (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41(4):2541–2551. https://doi.org/10.1093/nar/gks1330

    Article  CAS  PubMed  Google Scholar 

  12. Ender A, Etzel M, Hammer S et al (2021) Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Res 49(3):1784–1800. https://doi.org/10.1093/nar/gkaa1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Betat H, Long Y, Jackman JE et al (2014) From end to end: tRNA editing at 5′- and 3′-terminal positions. Int J Mol Sci 15(12):23975–23998. https://doi.org/10.3390/ijms151223975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deutscher MP (1984) Processing of tRNA in prokaryotes and eukaryotes. CRC Crit Rev Biochem 17(1):45–71

    Article  CAS  PubMed  Google Scholar 

  15. Schedl P, Roberts J, Primakoff P (1976) In vitro processing of E. coli tRNA precursors. Cell 8(4):581–594. https://doi.org/10.1016/0092-8674(76)90226-9

    Article  CAS  PubMed  Google Scholar 

  16. Klemm BP, Wu N, Chen Y et al (2016) The diversity of ribonuclease P: protein and RNA catalysts with analogous biological functions. Biomolecules 6(2). https://doi.org/10.3390/biom6020027

  17. Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem 247(16):5243–5251 https://doi.org/10.1016/S0021-9258(19)44963-6

    Article  CAS  PubMed  Google Scholar 

  18. Ender A, Grafl N, Kolberg T et al (2022) Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes. RNA 28(4): 551–567. https://doi.org/10.1261/rna.078814.121

  19. Henriksen JR, Løkke C, Hammerø M et al (2007) Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res 35(9):e67. https://doi.org/10.1093/nar/gkm193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin H-C, Zhao J, Niland CN et al (2016) Analysis of the RNA binding specificity landscape of C5 protein reveals structure and sequence preferences that direct RNase P specificity. Cell Chem Biol 23(10):1271–1281. https://doi.org/10.1016/j.chembiol.2016.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aquino-Jarquin G, Toscano-Garibay JD (2011) RNA aptamer evolution: two decades of SELEction. Int J Mol Sci 12(12):9155–9171. https://doi.org/10.3390/ijms12129155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gold L (2015) SELEX: how It happened and where it will go. J Mol Evol 81(5-6):140–143. https://doi.org/10.1007/s00239-015-9705-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gold L, Janjic N, Jarvis T et al (2012) Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol 4(3):a003582–a003582. https://doi.org/10.1101/cshperspect.a003582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jenison RD, Gill SC, Pardi A et al (1994) High-resolution molecular discrimination by RNA. Science 263(5152):1425–1429

    Article  CAS  PubMed  Google Scholar 

  25. Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80(21):6704–6713. https://doi.org/10.1128/AEM.01697-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nakahira Y, Ogawa A, Asano H et al (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54(10):1724–1735. https://doi.org/10.1093/pcp/pct115

    Article  CAS  PubMed  Google Scholar 

  27. Pu Q, Zhou S, Huang X et al (2020) Intracellular selection of theophylline-sensitive hammerhead aptazyme. Mol Ther Nucleic Acids 20:400–408. https://doi.org/10.1016/j.omtn.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shanidze N, Lenkeit F, Hartig JS et al (2020) A theophylline-responsive riboswitch regulates expression of nuclear-encoded genes. Plant Physiol 182(1):123–135. https://doi.org/10.1104/pp.19.00625

    Article  CAS  PubMed  Google Scholar 

  29. Wrist A, Sun W, Summers RM (2020) The theophylline aptamer: 25 years as an important tool in cellular engineering research. ACS Synth Biol 9(4):682–697. https://doi.org/10.1021/acssynbio.9b00475

    Article  CAS  PubMed  Google Scholar 

  30. Zimmermann GR, Jenison RD, Wick CL et al (1997) Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Biol 4(8):644–649. https://doi.org/10.1038/nsb0897-644

    Article  CAS  PubMed  Google Scholar 

  31. Altman S, Baer M, Guerrier-Takada C et al (1982) Transfer RNA processing and gene regulation. In: Gene regulation. Elsevier, pp 207–217

    Chapter  Google Scholar 

  32. Kole R, Baer MF, Stark BC et al (1980) E. coli RNAase P has a required RNA component in vivo. Cell 19(4):881–887. https://doi.org/10.1016/0092-8674(80)90079-3

    Article  CAS  PubMed  Google Scholar 

  33. Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857

    Article  CAS  PubMed  Google Scholar 

  34. Loria A, Pan T (1997) Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 36(21):6317–6325. https://doi.org/10.1021/bi970115o

    Article  CAS  PubMed  Google Scholar 

  35. Oh BK, Pace NR (1994) Interaction of the 3′-end of tRNA with ribonuclease P RNA. Nucleic Acids Res 22(20):4087–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Loria A, Pan T (1998) Recognition of the 5′ leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37(28):10126–10133. https://doi.org/10.1021/bi980220d

    Article  CAS  PubMed  Google Scholar 

  37. Niland CN, Anderson DR, Jankowsky E et al (2017) The contribution of the C5 protein subunit of Escherichia coli ribonuclease P to specificity for precursor tRNA is modulated by proximal 5′ leader sequences. RNA 23(10):1502–1511. https://doi.org/10.1261/rna.056408.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Svard SG, Kirsebom LA (1993) Determinants of Escherichia coli RNase P cleavage site selection: a detailed in vitro and in vivo analysis. Nucleic Acids Res 21(3):427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies-Sala C, Soler-Bistué A, Bonomo RA et al (2015) External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 1354:98–110. https://doi.org/10.1111/nyas.12755

    Article  CAS  PubMed  Google Scholar 

  40. McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238(4826):527–530. https://doi.org/10.1126/science.2443980

    Article  CAS  PubMed  Google Scholar 

  41. Koutmou KS, Zahler NH, Kurz JC et al (2010) Protein–precursor tRNA contact leads to sequence-specific recognition of 5′ leaders by bacterial ribonuclease P. J Mol Biol 396(1):195–208. https://doi.org/10.1016/j.jmb.2009.11.039

    Article  CAS  PubMed  Google Scholar 

  42. Niranjanakumari S, Stams T, Crary SM et al (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95(26):15212–15217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reiter NJ, Osterman AK, Mondragón A (2012) The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning. Nucleic Acids Res 40(20):10384–10393. https://doi.org/10.1093/nar/gks744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun L, Campbell FE, Zahler NH et al (2006) Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P. EMBO J 25(17):3998–4007. https://doi.org/10.1038/sj.emboj.7601290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kraemer KH, Seidman MM (1989) Use of supF, an Escherichia coli tyrosine suppressor tRNA gene, as a mutagenic target in shuttle-vector plasmids. Mutat Res/Rev Genet Toxicol 220(2–3):61–72. https://doi.org/10.1016/0165-1110(89)90011-0

    Article  CAS  Google Scholar 

  46. Hansen A, Pfeiffer T, Zuleeg T et al (2001) Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzymes from Escherichia coli and Bacillus subtilis. Mol Microbiol 41(1):131–143

    Article  CAS  PubMed  Google Scholar 

  47. Lorenz R, Bernhart SH, Zu H, Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26. https://doi.org/10.1186/1748-7188-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lorenz R, Hofacker IL, Stadler PF (2016) RNA folding with hard and soft constraints. Algorithms Mol Biol 11:8. https://doi.org/10.1186/s13015-016-0070-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammer S, Tschiatschek B, Flamm C et al (2017) RNAblueprint: flexible multiple target nucleic acid sequence design. Bioinformatics 33(18):2850–2858. https://doi.org/10.1093/bioinformatics/btx263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lindell M, Romby P, Wagner EGH (2002) Lead(II) as a probe for investigating RNA structure in vivo. RNA 8(4):534–541. https://doi.org/10.1017/s1355838201020416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kazakov S, Altman S (1991) Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. Proc Natl Acad Sci 88(20):9193–9197. https://doi.org/10.1073/pnas.88.20.9193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67. https://doi.org/10.1007/978-1-59745-033-1_4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Stefan Hammer for his ongoing support although he left academia. Furthermore, we thank Dr. Manuela Geiß for fruitful discussion on all mathematical aspects especially of the applied scoring. Special thanks to Dr. Christina Weinberg for valuable discussions about the experimental setup and Felix Kühnl for fruitful discussions about the project in general.

This work was supported by the Deutsche Forschungsgemeinschaft (grant numbers MO 634/9-2 and STA 850/15-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Findeiß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ender, A., Stadler, P.F., Mörl, M., Findeiß, S. (2022). RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing. In: Chappell, J., Takahashi, M.K. (eds) Riboregulator Design and Analysis. Methods in Molecular Biology, vol 2518. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2421-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2421-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2420-3

  • Online ISBN: 978-1-0716-2421-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics